首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用真空电弧熔炼法制备了AlCrMnFeNiCu0.8高熵合金,并在200、400、600、800 ℃下进行真空退火处理4 h,利用光学显微镜(OM)、X射线衍射仪(XRD)表征了合金的组织和晶体结构,使用标准三电极系统CHI660D电化学工作站分析了合金的耐蚀性能。结果表明,合金的微观组织表现为富Cu区和贫Cu区,主要由Fe-Cr固溶体、Al-Ni固溶体和富Cu固溶体组成,随着退火温度的升高,BCC结构较强,FCC结构较弱。在400 ℃退火下合金具有最正的自腐蚀电位(-0.584 V)和最低的自腐蚀电流密度(0.6618 μA·cm-2),在600 ℃和800 ℃退火条件下,阻抗图谱中出现了明显的扩散效应,导致了合金耐蚀性降低。  相似文献   

2.
在400、600、800、1100 ℃下对FeMoCrVTiSix(x=0、0.3)进行退火处理,利用X射线衍射仪、扫描电镜、差热扫描分析仪、显微硬度计、万能试验机等探究了不同退火温度对合金的组织和力学性能的影响。结果表明,Si元素的添加提高了FeMoCrVTi高熵合金的热稳定性。经过退火处理,FeMoCrVTiSix高熵合金的微观组织仍为以BCC固溶相为主的枝晶结构,但在枝晶边缘出现黑色的细小富Ti相,其含量随着退火温度的增加而增多,在1100 ℃下富Ti相回溶。富Ti相的析出提高了合金的硬度,其中,800 ℃退火后试样的硬度达到最大值,FeMoCrVTi试样的硬度达到932 HV0.2,FeMoCrVTiSi0.3的硬度达到998 HV0.2。  相似文献   

3.
为研究中低温热处理对CrFeCoNiTi1.5高熵合金性能的影响,分别在200、400及600 ℃下对高熵合金进行10 h退火处理。通过X射线衍射仪、扫描电镜(SEM)、能谱仪(EDS)、显微硬度计和电化学工作站对高熵合金的组织结构、表面形貌以及元素的偏析程度进行分析,并测试了高熵合金的动电位极化曲线以及维氏硬度。结果表明:退火温度的提高有利于CrFeCoNiTi1.5高熵合金中HCP结构相的析出;随着温度的升高Cr、Fe、Co和Ni逐渐向晶内聚集分布,Ti逐渐向晶间聚集。600 ℃中低温退火处理时合金耐腐蚀性能最好,硬度为914 HV0.5。  相似文献   

4.
采用激光熔覆法制备AlFeCrCoNiTi高熵合金涂层,研究涂层经600、800和1200℃退火处理后的组织和性能。结果表明:快速凝固抑制了该合金涂层金属间化合物的析出,涂层组织为树枝晶结构,主要由体心立方固溶体(BCC)构成,具有较高的硬度,其平均显微硬度为698HV;经不同温度退火后,涂层组织长大不明显,硬度没有明显下降,相结构和硬度的高温稳定性好;Fe、Al在枝晶中富集,而Cr、Co、Ni、Ti在枝晶间富集;随着退火温度升高,偏析程度加剧。  相似文献   

5.
利用电弧熔炼技术制备得到AlCoCuFeNi_(0.2)高熵合金,研究了铸态与900℃退火态高熵合金的组织、力学性能、磁学性能之间的差异。研究发现,铸态及900℃退火态合金都是BCC+FCC+有序BCC共存结构,BCC相是主相,组织都是典型的树枝晶组织,都具有优良软磁性能。900℃退火后,BCC相向FCC相转变,合金塑性显著改善,强度和硬度有所下降,饱和磁化强度得到提高。  相似文献   

6.
采用非自耗真空电弧熔炼技术制备了 AlCrFeNiTi高熵合金,并对其进行了高温退火处理.通过X射线衍射仪、扫描电镜以及往复式电化学腐蚀摩擦磨损测试仪研究了铸态及高温退火后AlCrFeNiTi高熵合金组织结构和性能.结果表明:合金经过高温退火之后,物相组成并没有发生明显变化.退火后的合金晶间区域减小,"上坡扩散"的存在导致合金成分偏析现象仍然存在.同时,高温退火导致合金的硬度从434.16 HV下降到408.00 HV,摩擦系数从0.7420下降到0.3635,体积磨损量从9.7231 mm3增加到16.9675 mm3.上述性能上的变化与合金内部的成分偏析和组织结构的转变有密切关系.  相似文献   

7.
采用真空电弧炉熔炼和铜模吸铸法制备了CoFeNiVTi高熵合金柱状试样,并对其在氩气保护条件下进行了800℃退火20 h的处理。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)和压缩实验等研究了铸态和退火态CoFeNiVTi合金的显微组织和力学性能。结果表明:铸态合金为单相BCC固溶体结构,显微组织呈现典型的柱状晶特征,合金元素均匀分布;退火态合金由BCC基体和金属间化合物Ni2V3型的σ析出相构成,σ析出相具有明显的取向特征,呈粗大板条状和细小针状。与铸态合金相比,由于σ析出相的存在,退火后合金的断裂强度有所下降,但仍高达2.5 GPa,硬度则显著提高至800 HV0.2。  相似文献   

8.
运用X射线衍射仪、扫描电镜和室温压缩实验等测试手段,研究了退火处理对Al Co Cr Fe Ni高熵合金组织结构和力学性能的影响。结果表明:Al Co Cr Fe Ni合金在700℃和800℃退火时,合金晶体结构为BCC相和少量金属间化合物,900℃时合金析出一种棒状的FCC相和枝晶内调幅分解相,在晶界上生成长链状的FCC相。退火处理后其室温压缩强度较铸态时有所提高;塑性700℃和800℃有所下降,而900℃则有所提高,最高达11.4%。  相似文献   

9.
采用真空电弧熔炼制备了CoCrFeNiSn高熵合金,并分别在650、750和850℃下进行热处理。采用扫描电镜、显微硬度计和电化学测试系统等研究了热处理温度对CoCrFeNiSn高熵合金的组织、硬度和耐腐蚀性能的影响。结果表明,经热处理后CoCrFeNiSn高熵合金的组织形态仍为典型的枝晶结构,但组织随热处理温度的升高而不断细化,导致其硬度明显升高,经850℃热处理后其硬度(HV)达到最大值392.4。而随着温度升高,CoCrFeNiSn高熵合金的耐腐蚀性能却呈下降趋势,经650℃热处理后其耐蚀性最佳。  相似文献   

10.
本文通过氩气雾化制备CoCrCuFeNi球形粉末,随后在900℃、1000℃、1100℃、1150℃温度下通过放电等离子活化烧结(Spark plasma sintering,SPS),成功制备CoCrCuFeNi高熵合金块体。结果表明:随着烧结温度的升高,材料室温抗拉强度先降低后升高,均匀却延伸率先大幅度提高,随后降低;当烧结温度为1100℃时,材料屈服强度和抗拉强度分别达到379.3MPa和655.6MPa,断后延伸率达21.9%;当烧结温度超过1100℃时,开始出现局部熔化现象,材料内部出现元素明显偏析现象。烧结温度为900℃时,拉伸断口沿球形粉末表面脆性断裂,随着烧结温度提高,断口转变为包含韧窝的韧性断裂。由于高温烧结过程中基体内发生渗碳现象,透射电镜结果表明碳与基体发生反应,形成第二相碳化物。  相似文献   

11.
对高熵合金CoCrCuFeNi进行30%形变及退火处理,分析了合金的点阵结构和晶粒形貌变化,并进行了硬度测试。结果表明,CoCrCuFeNi合金的部分树枝晶在冷形变后发生弯曲,硬度提高;退火后合金晶粒部分二次枝晶臂消失,硬度明显降低;高熵合金CoCrCuFeNi形变后退火在一定程度上促进了富铜相的溶解和原子的扩散。  相似文献   

12.
通过电子背散射衍射(EBSD)和维氏硬度测试,研究不同退火温度下新型铝钛强韧的CrCoNi中熵合金组织演变规律和硬度变化。结果表明,退火温度较高(1100℃)时,合金的退火孪晶密度较高,且孪晶形貌更加平直规整;再结晶和晶粒长大和退火温度并非简单的线性关系,超过临界温度合金再结晶和晶粒长大过程明显加快,在1100℃下退火1 h可得到平均晶粒尺寸20.89μm的等轴晶组织,由于加工应力释放,合金硬度下降到302.9 HV0.2。  相似文献   

13.
采用激光熔覆技术在W_6Mo_5Cr_4V_2AlA工具钢表面制备MoFeCrTiWAlNb高熔点高熵合金涂层,利用扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计、摩擦磨损试验机研究退火温度对涂层微观组织、相结构、显微硬度及耐磨性能的影响。结果表明,退火前,涂层组织主要由不规则的颗粒状组织和棒状树枝晶组成,包括体心立方结构固溶体(BCC)和MC相,其平均显微硬度为675.92 HV0.2。退火后涂层的组织逐渐长大,BCC主相峰增强,出现少量的MC和Laves相;950℃退火时显微硬度仅下降6.33%,说明该涂层在950℃下具有较好的抗高温软化性能。涂层经950℃退火后仍保持良好的耐磨性,涂层磨损机理以粘着磨损、磨粒磨损为主。  相似文献   

14.
通过氩气雾化制备CoCrCuFeNi球形粉末,随后在温度900、1000、1100、1150℃下通过放电等离子活化烧结(spark plasma sintering,SPS)成功制备CoCrCuFeNi高熵合金块体。室温拉伸结果表明:随着烧结温度的升高,CoCrCuFeNi材料室温抗拉强度先升高后降低,均匀延伸率却先大幅度提高,随后降低;当烧结温度为1100℃时,材料的屈服强度和抗拉强度分为379.3和655.6 MPa,断后延伸率达21.9%;当烧结温度超过1100℃时,开始出现局部熔化现象,材料内部出现明显的元素偏析现象。烧结温度为900℃时,拉伸断口沿球形粉末表面脆性断裂,随着烧结温度的提高,断口转变为韧性断裂特征。由于高温烧结过程中基体内发生渗碳现象,透射电镜分析结果表明碳与基体发生反应,形成第二相碳化物。  相似文献   

15.
用真空电弧熔炼法制备了AlCuCrFeNi多主元高熵合金。利用X射线衍射仪、扫描电子显微镜、显微硬度仪等研究了AlCuCrFeNi铸态以及采用不同退火工艺后的微观组织和硬度。结果表明:AlCuCrFeNi合金在铸态下是由枝晶内富Cr、Fe元素的BCC固溶相、枝晶间富Al、Ni的B2相以及枝晶间富Cu的FCC固溶相组成,并伴有少量的金属间化合物AlFe_(0.23)Ni_(0.77),铸造硬度值约为(465±10) HV。随着退火温度升高,Cu元素发生扩散,FCC相变得粗大,合金的硬度值降低到400 HV左右,与铸态硬度相差不大,说明合金具有较高的热稳定性以及较好的高温使用性能。  相似文献   

16.
目的 通过对激光熔覆CoCrFeNiW0.6高熵合金涂层进行退火处理,使涂层性能得到进一步提高。方法 采用RFL–C1000光纤激光器在45钢表面制备CoCrFeNiW0.6高熵合金涂层,通过SXL–1200管式电阻炉在不同温度下(600、800、1 000 ℃)对高熵合金涂层进行退火处理,保温时间为2 h,冷却方式为随炉冷却。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、显微硬度计、摩擦磨损试验机等对熔覆层的微观组织、显微硬度和摩擦磨损性能进行分析和测试。结果 CoCrFeNiW0.6高熵合金涂层由FCC相和μ相(Fe7W6)组成,经过不同温度退火处理后,涂层未析出新的相,μ相衍射峰强度呈先减小后增大的趋势;涂层组织经高温退火(800 ℃、1 000 ℃,2 h)后发生了明显的改变,经800 ℃/2 h退火处理后,枝晶间析出了大量μ相沉淀,经1 000 ℃/2 h退火处理后晶界开始出现断裂分解,晶粒内部和晶界部位析出了大量的富W颗粒相(μ 相)。经1 000 ℃/2 h退火处理后,熔覆层具有较高的平均显微硬度,为475.68HV0.3,相较于未经退火处理的熔覆层,其硬度提高了约45%;经600 ℃/2 h退火处理后,涂层的平均摩擦因数最低,约为0.226,磨损量最小,与未经退火处理的涂层相比,其磨损量降低了约28%。退火温度的升高并未使磨损机制发生明显改变,主要为磨粒磨损。结论 高温退火处理可以促进μ相的生成;经退火后,CoCrFeNiW0.6高熵合金涂层的硬度得到显著提高,改善了涂层的摩擦磨损性能,强化机制为固溶强化和第二相强化。  相似文献   

17.
采用气雾化法制备了FeCrNiCoMn合金粉末,并在45钢基体上激光熔覆制备出了FeCrNiCoMn高熵合金涂层。分别采用SEM、EDS、XRD对粉末、涂层的微观形貌及相结构进行了分析,并测试了涂层的硬度。对涂层在300℃、550℃、700℃时退火4 h,研究涂层的抗高温软化性。结果表明:气雾化制备的合金粉末具有较好的球形度,FeCrNiCoMn涂层由单一的FCC相构成,组织为椭球状的枝晶与枝晶间形貌;不同温度退火后的涂层保持FCC相不变;在550℃以下退火,涂层组织无变化,但在700℃退火后,涂层组织变化明显;退火前后涂层的硬度无明显变化。  相似文献   

18.
使用真空电弧炉熔炼出(Fe50Mn30Co10Cr10)94Al6合金,利用冷轧及在不同温度对合金进行退火,以期望得到由多尺度再结晶晶粒构成的层状结构;并对不同退火温度的样品进行拉伸性能测试。利用扫描电镜和EBSD对合金组织形貌进行表征,采用X射线衍射方法研究其相组成。结果表明:合金在铸态和冷轧后相组成未发生变化,700 ℃退火得到较好的多尺度再结晶晶粒的层状结构,其屈服强度为487 MPa,抗拉强度为708 MPa,断后伸长率为39%,表现出良好的综合力学性能。  相似文献   

19.
为了研究退火处理对CrCuFeMnTi高熵合金组织结构和力学性能的影响,通过真空电弧熔炼法在氩气保护下制备了铸态合金,在不同温度下对合金进行退火处理,观察其组织结构并进行力学性能测试。结果表明:铸态CrCuFeMnTi高熵合金由1个密排六方和1个面心立方结构固溶体构成,形成由枝晶相和枝晶间相组成的典型枝晶组织形貌;合金在750℃以下退火时,主要以元素的扩散和组织的均匀化为主,经过900℃等温退火处理后,合金中密排六方结构的固溶体逐渐转变成体心立方结构固溶体,该相变过程是由元素扩散引起及控制的;经过750℃以下的退火处理后,合金的硬度和断裂强度均有所提高,但断裂行为均表现出脆性特征。  相似文献   

20.
退火温度对Al-6Mg-Sc-Zr合金组织与性能的影响   总被引:1,自引:0,他引:1  
采用半连续铸锭冶金法制备一种成分为Al-6Mg-0.4(Sc+Zr)的合金,冷轧板材经不同温度稳定化退火处理1 h,然后测试合金的拉伸力学性能,借助光学金相、扫描电镜、能谱仪以及透射电镜分析研究不同退火温度下Al-6Mg-0.4(Sc+Zr)合金的显微组织结构变化及微区成分。结果表明:合金抗拉强度和屈服强度随退火温度的升高而降低,而其伸长率随退火温度的升高而增大;合金在退火过程中,随退火温度的升高,依次发生不同程度的回复和部分再结晶;300℃以下退火1 h,合金中只发生不同程度的回复;350-500℃退火1 h,发生部分再结晶;合金在300℃退火处理1 h后拉伸力学性能为:σb 423 MPa,σ0.2 311 MPa,δ20.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号