首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过金相显微组织分析及力学性能测试,研究了退火温度(900、950、1 000℃)及退火时间(5、7、9、11 min)对Fe-36Ni因瓦合金热轧板组织及性能的影响,并通过扫描电镜对断口形貌进行了观察。结果表明,随着退火温度的升高和保温时间的延长,奥氏体晶粒逐渐长大,并伴有少量的退火孪晶,材料的塑韧性提高,拉伸时发生典型的韧性断裂。经900℃退火后,其综合力学性能优于其它温度下处理的合金,且合金的晶粒分布比较均匀,并在保温时间为7 min时,具有最佳的综合力学性能。结合现场生产技术要求,退火温度为900℃、保温时间为7 min的热处理工艺最适合Fe-36Ni因瓦合金热轧板的后续轧制生产过程。  相似文献   

2.
研究了锻造加热温度(1050~1200 ℃)和锻造保温时间(40~120 min)对20Cr2Ni4A钢经相同锻造变形后锻后奥氏体晶粒长大行为的影响,并对不同锻造加热温度下的淬火态20Cr2Ni4A钢进行了力学性能检测。结果表明,锻后20Cr2Ni4A钢奥氏体晶粒长大规律在低于1150 ℃仍然符合Beck模型,模型计算值与实际测量值相吻合。随着锻造加热温度的升高,奥氏体晶粒长大呈现先缓慢增加后快速增加的规律。当锻造加热温度超过1150 ℃时,第二相粒子大量溶解,对晶界的钉扎作用急剧减弱。综合考虑20Cr2Ni4A钢锻后奥氏体晶粒尺寸均匀性、热处理后力学性能测试结果及可锻性因素,确定最优锻造加热温度为1150 ℃。  相似文献   

3.
研究了不同固溶处理工艺(1050、1100、1150、1200℃,保温15、30、45、60 min)对新型Cr18Ni31NbAl奥氏体不锈钢组织和抗拉强度的影响。结果表明,提高固溶处理温度能促进合金晶粒尺寸长大;1050~1200℃固溶处理时,晶粒正常长大,晶粒长大激活能Q=187 kJ/mol;合金的抗拉强度随固溶温度的升高或固溶时间的延长逐渐降低。  相似文献   

4.
采用OM和铁素体测量仪研究了铸态Fe-18Mn-5.5Si-9.5Cr-4Ni合金的微观组织随退火温度的改变及其对合金形状记忆效应的影响.结果表明,在773-1173 K之间退火处理能进一步提高合金的形状记忆效应.经973 K退火30 min后,合金的可恢复变形量达到了6.4%,比训练4次的常规Fe-14Mn-5Si-8Cr-4Ni合金高1.2%.当铸态合金在低于1173 K退火30min后,δ铁素体仍为条状,变形时能使应力诱发ε马氏体以区域化的方式形成,合金具有良好的形状记忆效应;当退火温度高于1273 K时,δ铁素体将固溶到奥氏体中,体积分数减少.当退火温度进一步升高到1423 K时,δ铁素体的体积分数显著增加,形态由条状演变为岛状.条状δ铁素体体积分数的减少和岛状δ铁素体的形成导致δ铁素体不能有效分割奥氏体晶粒,合金的形状记忆效应显著下降.  相似文献   

5.
为了分析固溶温度和时间对GH2909高温合金奥氏体晶粒长大的影响,获得GH2909合金奥氏体晶粒长大规律,对GH2909高温合金在不同固溶温度(1000~1080 ℃)和不同固溶时间(1~4 h)下进行固溶处理。对不同固溶处理工艺后的GH2909合金奥氏体晶粒平均尺寸进行测量,建立了GH2909合金固溶处理时奥氏体晶粒长大模型。结果表明,GH2909合金奥氏体晶粒随固溶温度和时间的增加而逐渐长大,组织中的Laves相逐渐回溶,且当固溶温度小于1020 ℃时,GH2909合金具有较好的抗奥氏体晶粒粗化能力,可以有效指导GH2909合金锻造过程中的晶粒度控制。  相似文献   

6.
锆合金是核反应堆中用作核燃料包壳的重要结构材料,研究其在低真空环境下的初期氧化行为有助于认识锆合金的氧化机制。本工作将Zr-0.75Sn-0.35Fe-0.15Cr、Zr-0.75Sn-0.35Fe-0.15Cr-0.15Nb和Zr-1.5Sn-0.35Fe-0.15Cr(质量分数,%,下同)3种合金制成大晶粒样品,再用电解双喷制成透射电子显微镜(TEM)薄样品,并通过大晶粒TEM薄样品在真空度为3 Pa的真空管式炉中进行280和290℃的氧化实验来研究Sn和Nb对锆合金初期氧化行为的影响。结果表明:添加Nb或提高Sn含量均促进Zr-0.75Sn-0.35Fe-0.15Cr合金在低真空条件下280和290℃氧化初期ZrO_2晶粒的形核和长大。低真空条件下280℃/30 min氧化时,添加Nb会促进ZrO_2晶粒增大,而提高Sn含量使ZrO_2晶粒由球状变为短棒状。随着氧化温度升高(290℃/30 min),Zr-0.75Sn-0.35Fe-0.15Cr和Zr-1.5Sn-0.35Fe-0.15Cr合金表面ZrO_2晶粒出现长大现象,而Zr-0.75Sn-0.35Fe-0.15Cr-0.15Nb合金表面ZrO_2晶粒形核速率较快。  相似文献   

7.
研究了低合金高强钢加热过程奥氏体晶粒长大规律和合金元素的固溶规律。结果表明,随着保温时间延长,奥氏体平均晶粒尺寸逐渐增大。加热到1200 ℃时,未溶相主要为NbC、TiC,均热时间为6 min时Ti、Nb固溶达到平衡,固溶率分别为92.4%和13.6%。实验室条件下,适宜加热温度选定在1150~1200 ℃之间,保温时间约6 min。  相似文献   

8.
通过金相实验,对20Cr Mn Ti H钢在不同加热温度(850~1150℃)及保温时间(10~40 min)下的晶粒长大规律进行了研究,基于所得数据,通过回归分析建立了适用于此种材料加热与保温过程的奥氏体晶粒长大模型,并将该模型引入有限元软件对奥氏体晶粒长大行为进行数值模拟。结果表明,奥氏体晶粒尺寸随加热温度升高而增大,且长大速度越来越快,随保温时间延长而增大,且长大速度不断减缓;1000℃为20Cr Mn Ti H钢的粗化温度,T≤1000℃时,晶粒长大缓慢,T≥1000℃时,晶粒急剧长大;有限元软件成功模拟了奥氏体晶粒长大过程,模拟结果与实验结果相符。  相似文献   

9.
利用Gleeble-3500型热模拟试验机研究不同加热温度(900~1200℃)和保温时间(3~60 min)下轴承钢M50NiL的奥氏体晶粒长大规律。结果表明:随着加热温度的升高和保温时间的延长,M50NiL钢奥氏体晶粒尺寸都会增大。在温度低于1100℃时,奥氏体晶粒长大较缓慢,M50NiL钢表现出良好的抗晶粒粗化能力,但是当温度升高到1200℃时,保温时间小于30 min时,奥氏体晶粒迅速长大;通过对试验数据进行线性拟合得出了M50NiL钢奥氏体晶粒长大模型。  相似文献   

10.
利用箱式炉将15Cr12CuSiMoMn钢加热至900~1100 ℃奥氏体化温度区间分别保温15~120 min,研究了不同奥氏体化温度和保温时间下原奥氏体晶粒的长大行为。结果表明,随着奥氏体化温度的升高,晶粒尺寸不断增大,长大行为呈幂函数规律;在1000 ℃以上加热,晶粒显著粗化;随着保温时间的延长,晶粒长大行为呈近似于抛物线匀减速规律;保温时间<60 min时,晶粒长大速率较快,当保温时间超过60 min时趋于平稳。基于Arrhenius公式,通过对试验数据进行线性回归拟合分析,建立了适合于本钢种的晶粒长大动力学模型,对比模型计算值与实际测量数据间的误差(2%<ΔXi<5%)验证了该模型的准确性与可靠性。  相似文献   

11.
对中锰钢在950~1200℃条件下分别进行15~120 min等温奥氏体化的热处理实验,研究其奥氏体晶粒长大行为。结果表明:随着加热温度的升高和保温时间的延长,奥氏体晶粒均会长大。当加热温度低于1100℃时,奥氏体晶粒长大缓慢,但是当加热温度高于1150℃时,奥氏体晶粒明显粗化。通过对实验数据进行线性回归,获得了实验钢的奥氏体晶粒长大动力学模型。  相似文献   

12.
通过在热力模拟试验机上采用不同工艺参数的单道次压缩和等温喷水淬火实验,研究了初始晶粒尺寸和奥氏体含量对Fe-3%Si钢应力-应变曲线和软化量的影响。结果表明:从800℃到1200℃,初始奥氏体含量随着等温温度的提高而增加,平均奥氏体含量由约4%增到约13%,其分布状态由弥颗粒状散趋向聚集粗化成棒状;在1200℃等温1~5 min,单相硅钢平均晶粒尺寸长大速率为144μm/min,而双相硅钢平均长大速率为68μm/min。在加工硬化阶段,奥氏体含量和初始晶粒尺寸对真应力-真应变曲线影响较小,当加工硬化和动态软化达到平衡时,随着奥氏体含量和晶粒尺寸的增加应力值降低。单道次压缩+等温淬火实验表明,初始晶粒越小,奥氏体粒子含量越高,硅钢再结晶软化率提高越快,再结晶分数越高。  相似文献   

13.
通过在热力模拟试验机上采用不同工艺参数的单道次压缩和等温喷水淬火实验,研究了初始晶粒尺寸和奥氏体含量对Fe-3%Si钢应力-应变曲线和软化量的影响。结果表明:从800℃到1200℃,初始奥氏体含量随着等温温度的提高而增加,平均奥氏体含量由约4%增到约13%,其分布状态由弥颗粒状散趋向聚集粗化成棒状;在1200℃等温1~5 min,单相硅钢平均晶粒尺寸长大速率为144μm/min,而双相硅钢平均长大速率为68μm/min。在加工硬化阶段,奥氏体含量和初始晶粒尺寸对真应力-真应变曲线影响较小,当加工硬化和动态软化达到平衡时,随着奥氏体含量和晶粒尺寸的增加应力值降低。单道次压缩+等温淬火实验表明,初始晶粒越小,奥氏体粒子含量越高,硅钢再结晶软化率提高越快,再结晶分数越高。  相似文献   

14.
以含Nb高碳钢为研究对象,研究了钢的表面脱碳层深度及奥氏体晶粒大小随温度变化规律。结果表明:试验钢在800℃保温20 min,钢的表面有一层致密的氧化铁皮,脱碳现象不明显。温度从900℃升高到950℃,钢表面氧化铁皮开始开裂并与基体间形成缝隙,脱碳现象明显,在1180℃时总脱碳层深度为269μm。随温度从900℃升高到1180℃,奥氏体晶粒尺寸长大明显,900℃奥氏体晶粒平均尺寸16.8μm,当温度升高到1180℃时,奥氏体晶粒平均尺寸达到132μm。随温度升高,未固溶Nb C量降低及奥氏体晶粒长大,使C原子扩散阻力降低,脱碳层深度随温度升高而增大。  相似文献   

15.
利用金相观察、硬度测量、热模拟技术及透射电子显微术(TEM),研究了Fe-40Ni-Ti合金的组织及力学性能。结果表明:Fe-40Ni-Ti合金在室温下仍然是面心立方结构,晶粒中有少量孪晶组织。锻造后试样中有两类析出:一类是在光镜下可直接观察到的1 μm以上合金凝固过程中形成的TiN颗粒,另一类是在TEM电镜下发现的轧制应变诱导析出,尺寸在20 nm以下的TiN颗粒。合金在不同温度保温后冷却到室温的硬度变化不明显。在850 ℃变形后保温过程中,合金发生应变诱导析出现象。  相似文献   

16.
加热过程中细晶高强IF钢奥氏体晶粒长大规律研究   总被引:1,自引:0,他引:1  
通过显微组织观察实验,对细晶高强IF钢在不同加热温度和保温时间下奥氏体晶粒长大规律进行研究。结果表明:随加热温度升高、保温时间延长,奥氏体晶粒尺寸逐渐增大。由实验结果可知细晶高强IF钢的晶粒粗化温度为1050℃,晶粒粗化时间为40 min。为保证微合金元素充分固溶,同时获得细小的奥氏体晶粒,生产中将加热温度控制在1050~1100℃、保温时间控制在30 min~40 min。通过对实验数据进行非线性回归建立了细晶高强IF钢奥氏体晶粒长大规律的数学模型,模型的计算结果与实验结果基本吻合。  相似文献   

17.
采用光学显微镜、扫描电镜、电子背散射衍射、硬度测试和拉伸试验等研究了多道次热轧工艺对微合金化Fe-36Ni因瓦合金的微观组织、力学性能及热膨胀性能的影响。结果表明:Mo-Ti-Nb微合金化Fe-36Ni合金经轧制后的组织为单相奥氏体组织,且析出相数量较少;当终轧温度为850℃及采用较小的道次压下率轧制后,合金中出现了形变带,且保留了一定比例的形变奥氏体晶粒;而采用终轧温度为1050℃及较大道次压下率轧制后,形变带消失,奥氏体晶粒再结晶程度提高,晶粒尺寸更均匀;在两种轧制工艺下,合金的抗拉强度均达到约630 MPa,但较低终轧温度及较小道次压下率能使合金的屈服强度提高约45 MPa,小尺寸再结晶奥氏体晶粒的细晶强化及形变奥氏体晶粒中的亚晶强化是合金屈服强度提高的原因。采用多元合金化,轧制态因瓦合金的热膨胀性能可达到同类合金在热处理态下的水平,较低的终轧温度和道次压下率,能够降低轧态合金的晶界总量,增强织构强度,从而获得更低的热膨胀系数。  相似文献   

18.
利用金相实验方法,基于实验数据,应用Beck、Hillert、Sellars数学模型研究了40CrNi2MoE钢在加热温度850~1200℃和保温时间30~480 min下的奥氏体晶粒长大规律。结果表明,随加热温度升高和保温时间延长,40CrNi2MoE钢奥氏体晶粒逐渐长大,当加热温度超过1050℃或保温时间超过120 min时,试验钢奥氏体晶粒开始粗化。通过对Beck、Hillert和Sellars 3种晶粒长大数学模型对比分析,Sellars模型对40CrNi2MoE钢的奥氏体晶粒尺寸预测具有较高的精度,其奥氏体晶粒长大模型方程为:当温度为850℃≤T≤1050℃时,D5.49Sellars=7.64×1021texp(-390081/(RT));当温度为1050℃≤T≤1200℃时,D8.13Sellars=8.04×1041texp(-771322/(RT))。  相似文献   

19.
王世宏  李健  柴锋  罗小兵  杨才福  苏航 《金属学报》2020,56(9):1217-1226
采用动态机械分析仪(DMA)对Fe-19Mn合金经950~1100℃固溶处理后的的阻尼性能进行了测试,利用OM和TEM观察了显微组织的演变,利用XRD进行了物相分析和不同类型层错几率的计算。结果表明:经固溶处理的Fe-19Mn合金的阻尼性能随振幅的增加呈近似线性增加,且振幅小于临界振幅A'(A'≈30μm)时的阻尼性能变化符合G-L位错模型,振幅高于A'时的阻尼性能变化与微塑性变形有关。随着固溶温度的升高,Fe-19Mn合金的阻尼性能降低,其中经950℃固溶处理后的阻尼性能最好。在不同的振幅范围内,其阻尼性能呈现不同的变化特征:当振幅小于等于170μm时,阻尼性能呈指数形式降低,并且与ε-马氏体中的形变层错几率的变化趋势相似,此时Fe-19Mn合金的阻尼性能主要受ε-马氏体中的形变层错边界的影响;当振幅大于170μm时,阻尼性能呈线性降低,并且与γ/ε相界面相对长度的变化趋势相似,此时Fe-19Mn合金的阻尼性能随固溶温度的变化主要受γ/ε相界面的影响。由γ-奥氏体中的层错观察可知,γ-奥氏体中的层错边界对Fe-19Mn合金的阻尼性能随振幅的变化无明显贡献。  相似文献   

20.
运用光学显微镜、扫描电镜、能谱分析手段系统研究了加热温度、保温时间及合金成分对20Si Mn3Ni A钢原始奥氏体晶粒尺寸的影响。结果表明,随加热温度升高,原始奥氏体晶粒尺寸逐渐增大,奥氏体晶粒长大速率与该温度下的保温时间大致呈抛物线变化;较高含量的Mn提高了Ti、V的碳氮化物的固溶度积,使得该钢在加热温度大于990℃时,晶粒明显长大,高温加热时不具有抗晶粒粗化能力。综合考虑晶粒大小和第二相颗粒(主要是碳氮化物)的影响,并通过测试淬火+回火后的力学性能,确定20Si Mn3Ni A钢合适的奥氏体化温度约为900℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号