首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用第一原理平面波赝势方法,结合Wagner-Schottky缺陷热力学模型,研究金属间化合物L10-TiAl中各种空位和反位点缺陷的形成焓、热力学平衡浓度及其相互作用等。结果表明:这些缺陷的热力学平衡浓度均随温度的升高而增大,其中反位缺陷浓度均高于空位缺陷浓度,Ti空位浓度高于Al空位浓度。在理想化学计量比成分下,Ti反位缺陷的浓度与Al反位缺陷的基本相当;在略偏离计量比的富Ti成分端,Ti反位缺陷的浓度高于Al反位缺陷的;在富Al成分端则相反。不同点缺陷之间均普遍存在相互排斥性,难以聚集,将倾向于向基体中分散和扩散。  相似文献   

2.
运用第一原理平面波赝势方法计算L12-Al3Li金属间化合物点缺陷的形成焓,并结合Wagner–Schottky模型,研究L12-Al3Li金属间化合物在523、673、823和1 000 K时点缺陷浓度与成分之间的关系。结果表明:在这4个温度下,L12-Al3Li金属间化合物中Al空位浓度最小,Li空位浓度次之,Al反位和Li反位的缺陷浓度较大。Al反位和Li反位缺陷浓度在理想金属间化合物Al3Li化学计量比成分处基本相同,不过两种反位的缺陷浓度随着合金成分相对于化学计量比成分的偏离而变化显著,在富Al端Al反位缺陷浓度较大,在富Li端Li反位缺陷浓度较大。运用Arrhenius方程计算点缺陷的有效形成焓,结果显示Al反位和Li反位的有效形成焓较小且基本相同,Li空位次之,Al空位最大。  相似文献   

3.
采用基于密度泛函理论的第一性原理计算分析了含点缺陷结构NiAl晶胞的形成热、形成能、点缺陷平衡浓度、力学性能、电子结构等。将NiAl与其他B2结构的金属间化合物进行对比,发现NiAl拥有更好的塑性和成键强度。根据形成热、形成能和点缺陷平衡浓度的计算结果,发现Ni反位和空位缺陷是NiAl晶胞结构中主要的点缺陷。通过Pugh(G/B_0)和Cauchy(C_(12)–C_(44))准则预测出Ni空位和反位缺陷、Al反位缺陷能够提升NiAl合金的脆性,其中Ni空位缺陷作用最明显;而Al空位缺陷能够改善NiAl合金的塑性,但在NiAl合金中的浓度很低。态密度计算结果发现NiAl合金具有良好的导电性能,Ni空位缺陷、Al空位和反位缺陷能够提升NiAl合金的稳定性。  相似文献   

4.
B2-RuAl点缺陷结构的第一原理计算   总被引:2,自引:1,他引:2  
采用第一原理赝势平面波方法,计算了B2-RuAl金属间化合物的基本物性及其点缺陷结构的几何、能态与电子结构,通过对不同点缺陷结构形成热与形成能的计算与比较,分析和预测了RuAl金属间化合物中点缺陷结构的种类与存在形式.结果表明:RuAl金属间化合物的点缺陷主要是Ru空位和Al反位,在富Ru合金中主要为Ru反位,在富Al合金中则主要是Al反位.这些点缺陷主要以Ru-Ru双空位和Al-Al双反位的组态结构形式出现,并且双空位以Ru-Ru为第一近邻时其点缺陷结构最稳定,而双反位则是以Al-Al为第三近邻时稳定性最高.进一步通过对NiAl和RuAl不同点缺陷结构Cauchy压力的比较,发现点缺陷对RuAl塑性的降低程度比NiAl低,因而含有点缺陷的实际合金的室温塑性RuAl比NiAl好.  相似文献   

5.
基于密度泛函理论的第一性原理平面波赝势方法研究了V掺杂Ni3Al合金的电子结构和点缺陷结构.通过计算与实验结果对比选择了适合Ni3Al合金计算的近似方法,计算了含有各个缺陷的晶胞的晶格常数,形成热和结合能,点缺陷的形成能和平衡浓度,态密度和电荷密度.计算结果表明:Ni3Al合金中反位缺陷较空位缺陷易形成,NiAl是Ni3Al合金中最主要的反位缺陷,Al位最易形成缺陷,在1400 K时,空位缺陷的浓度远远低于反位缺陷的浓度.V加入Ni3Al合金体系中能提高合金的稳定性.  相似文献   

6.
运用第一性原理赝势平面波方法,研究了L1_2-Co_3X(X=Ti,Ta,Al,W,V)金属间化合物的基本物性及其点缺陷结构的几何、能态与电子结构。通过对相应合金中两种组元原子的空位和反位点缺陷结构形成热与结合能的计算与比较,分析了L1_2-Co_3X(X=Ti,Ta,Al,W,V)金属间化合物中点缺陷结构的种类与存在形式。结果表明,L1_2-Co_3X(X=Ti,Ta,Al,W,V)金属间化合物的点缺陷结构与L1_2-Ni_3Al合金保持一致,主要是Co原子晶格以及X原子晶格上出现反位缺陷。基于晶体总电子态密度结构信息的分析,很好地验证了上述计算结果。  相似文献   

7.
基于马儿可夫链理论和Bragg-Williams型方程,建立了描述反位缺陷占位几率的基本方程和转移几率;推导出了平衡时空位与反位缺陷浓度的表达式。利用所建模型结合第一性原理平面波赝势法系统研究了NiAl中各种点缺陷,从定量计算和电子结构角度论证了平衡状态下,在Ni:Al=1附近,Ni和Al原子的占位服从Fermi-Dirac统计,并且当温度从800增加到1300K时,NiAl几率比AlNi几率大106~109倍,反位缺陷以NiAl为主。VNi浓度比AlNi浓度大105~107倍、而NiAl浓度比VAl浓度大106~1010倍。对于同一原子而言,NiAl比VNi稳定,AlNi比VAl稳定。  相似文献   

8.
孙坚  林栋梁 《金属学报》1993,29(4):25-29
本文建立起Ll_2型金属间化合物点缺陷的平衡方程,计算了Ni_3Al中反位置缺陷、空位的浓度分布并通过考察点缺陷的温度效应,在理论上澄清了对Ni_3Al中“组分点缺陷”性质的认识  相似文献   

9.
运用Miedema模型研究了Al3X(Sc,Er,Zr,Li)金属间化合物的形成焓,并结合点缺陷形成理论计算了Al3X空位和反位缺陷的形成焓。结果表明Al-Sc和Al-Er系形成焓较为接近,说明Sc和Er在Al中性质相近。Al-X(Sc,Er,Li)二元化合物中X原子的空位形成焓高于Al原子的空位形成焓,表明Al-X系二元化合物更易形成Al空位。Al3Er反位缺陷形成焓最大,Al3Zr和Al3Sc居中,Al3Li最小。Al3Sc、Al3Er和Al3Zr易于出现空位和反位两类缺陷共存的情形,而Al3Li反位缺陷形成焓明显小于空位形成焓,因而更易形成反位缺陷。  相似文献   

10.
<正>5反Kirkendall效应[9,28]经典的Kirkandall效应反映的是合金中组元元素在成分浓度梯度下引发空位的净流量,以一定的扩散速度越过扩散偶界面。或解释为:在退火的扩散偶条件下,在溶质原子的区域中诱发产生空位点缺陷的浓度改变。反Kirkendall效应则倒过来为[9]:由空位(或间隙原子)的扩散迁移区域中诱发产生溶  相似文献   

11.
应用微观相场法,计算Al-9.0at%Li合金沉淀相中的反位缺陷Al_(Li)和Li_(Al)随时效温度及时间变化的规律。结果表明,在相同的时效温度下,L12结构的Al_3Li相中反位缺陷Al_(Li)和Li_(Al)随时效时间的增加逐渐减小,且在富Al环境下Al_(Li)反位缺陷的浓度高于Li_(Al),在Al_3Li相中以Al_(Li)为主,同时存在少量的Li_(Al)。当时效温度发生变化时,时效温度越高,在Al_3Li相稳定形核后Li_(Al)、Al_(Li)反位缺陷的浓度越高。在达到平衡浓度前也具有这个特点,但是规律性并不显著。  相似文献   

12.
采用三元微观相场模型,对铝含量大于25%(原子分数,下同)与镍含量大于75%(原子分数,下同)的NiAlFe三元合金中反位缺陷NiAl、AlNi随Fe含量变化的规律进行模拟计算,其中NiAl(AlNi)表示Ni(Al)原子占据Al(Ni)格点产生的反位缺陷。结果表明:在一定温度范围内,随着Fe含量的增大,铝含量大于25%的NiAlFe合金中AlNi浓度明显上升,NiAl浓度略有上升,但小于AlNi浓度,相反在镍含量大于75%的NiAlFe合金中NiAl浓度明显上升且远大于AlNi浓度;同一温度下比较铝含量大于25%与镍含量大于75%的NiAlFe合金中反位缺陷受Fe含量影响的程度差异,发现前者的AlNi浓度比后者受Fe含量影响大,而后者的NiAl浓度比前者受Fe含量影响大。此外,反位缺陷NiAl和AlNi浓度随时间的演化规律均是逐渐由初始值降低至平衡值;温度升高促使反位缺陷演化变缓慢以及平衡时浓度增大。  相似文献   

13.
利用第一性原理的Castep软件,对B2型金属间化合物Co Sc的16种点缺陷的热力学参数、电子结构和弹性常数进行计算,分析16种点缺陷存在的类型及对化合物力学性能的影响。结果表明:Co单空位形成热和结合能分别是-6.78 e V和-0.43 e V,Co单空位化合物最容易形成、稳定性最好;其次是Co单反位化合物,形成热和结合能分别是-6.152 e V和2.504 e V。从而得出16种点缺陷最稳定存在形式是Co空位和Co反位;存在的组态是Co单空位、Co双空位、Co三空位和Co双反位。由电子态密度图中的费米能级和赝能隙也定性判断出,Co空位和反位缺陷化合物比Sc空位和反位缺陷化合物稳定。计算6种点缺陷的泊松比?可知,Co三空位的化合物金属键最强、塑性最好。与完整的Co Sc金属间化合物塑性相比,有空位缺陷的金属间化合物塑性得到提高。  相似文献   

14.
采用第一原理赝势平面波方法,计算了B2-YX(X=Cu,Rh,Ag,In)金属间化合物的基本物性。通过对不同点缺陷结构形成热和形成能的计算与比较,分析和预测了B2-YX金属间化合物中点缺陷结构的种类与存在形式。结果表明:B2-YX点缺陷结构主要是X子晶格上的空位与Y子晶格上的反位,在富Y的YX金属间化合物中主要为X空位,在富X的YX金属间化合物中则主要是X反位。通过对B2-YX金属间化合物完整晶体与点缺陷结构Cauchy压力参数C12.C44和G/B。值的比较,发现点缺陷能明显提高B2-YX金属间化合物的室温塑性,推测这很可能是含有点缺陷的实际B2-YX多晶材料比无缺陷理想单晶和NiAl多晶材料表现出更好室温塑性的原因之一。  相似文献   

15.
为了深入认识点缺陷对α-Fe塑性变形行为的影响,建立含点缺陷的α-Fe试样计算模型,以点缺陷的原子浓度为变量,开展试样单轴拉伸的分子动力学模拟。研究结果表明:在相同的缺陷浓度下,不同类型的点缺陷导致的晶格畸变程度不同,因而试样发生塑性变形的难易程度就不同,其中自间隙Fe原子导致的晶格畸变程度比空位大,相应试样更容易发生塑性变形;试样的塑性变形机制随点缺陷类型和浓度而变化,进而使试样的应力-应变曲线特征发生显著变化;对于本模拟中各浓度含空位的试样,或含较低浓度自间隙Fe原子或Frenkel缺陷的试样,塑性变形表现为拉伸应力诱发的相变和位错滑移混合的机制;对于含较高浓度自间隙Fe原子或Frenkel缺陷的试样,塑性变形以位错滑移和非晶化塑性变形为主且伴随有相变。本研究加深了有关点缺陷对金属变形机制影响的认识,为后续分析多晶α-Fe材料的物理和力学性质奠定了有益的基础。  相似文献   

16.
掺V和Ag的TiAl合金中缺陷和电子密度的正电子湮没研究   总被引:2,自引:1,他引:2  
测量了Ti50Al50,Ti50Al48V2,Ti50Al48Ag2合金和充分退火的Ti,Al,Ag,V金属的正电子寿命谱,利用正电子寿命参数分别计算了合金基体和缺陷态的自由电子密度。TiAl合金的脆性与其基体和晶界缺陷处的自由电子密度较低有关。在富Ti的TiAl合金中加入V,V原子比Al和Ti原子能提供较多的自由电子参与形成金属键,因而提高了合金基体和晶界缺陷处的自由电子密度;在TiAl合金中加入Ag也有类似的效应。在TiAl合金中加入V和Ag,有利于提高合金的韧性。  相似文献   

17.
基于微观相场模型, 研究Ni80Al7Cr13合金在873 K时效过程中L12 结构Ni3(Al,Cr)的沉淀先期效应.分析沉淀早期微结构、成分及有序度随时间的变化.研究发现,原子有序化早于原子簇聚,首先形成有序度很低的L10结构非化学计量比有序畴,随着时间的延长,有序畴的有序度逐渐提高,当有序度增大到一定时,L10结构非化学计量比有序畴逐渐向非化学计量比L12结构转变,最后非化学计量比L12 结构有序畴的成分和有序度随时间的增长逐渐达到化学计量比L12结构的成分和有序度,在化学计量比L12 结构的有序相中,Al原子倾向于占据αⅠ反位, 而Cr原子则倾向于在αⅡ反位择优占位.  相似文献   

18.
基于微观相场模型, 研究Ni80Al7Cr13合金在873 K时效过程中L12 结构Ni3(Al,Cr)的沉淀先期效应.分析沉淀早期微结构、成分及有序度随时间的变化.研究发现,原子有序化早于原子簇聚,首先形成有序度很低的L10结构非化学计量比有序畴,随着时间的延长,有序畴的有序度逐渐提高,当有序度增大到一定时,L10结构非化学计量比有序畴逐渐向非化学计量比L12结构转变,最后非化学计量比L12 结构有序畴的成分和有序度随时间的增长逐渐达到化学计量比L12结构的成分和有序度,在化学计量比L12 结构的有序相中,Al原子倾向于占据αⅠ反位, 而Cr原子则倾向于在αⅡ反位择优占位.  相似文献   

19.
采用嵌入原子势, 运用分子动力学 (MD) 研究了Ti(0001) 表面低能沉积不同能量Ti原子时表面吸附、溅射和空位的变化. 低能Ti原子沉积Ti(0001) 表面过程
中, 存在一个溅射能量阈值, 其值大约为40---50 eV. 入射原子能量低于溅射阈值时, 入射原子可以认为是沉积原子; 入射原子能量大于溅射阈值时, 溅射产额随入射原子能量的增加而线性增加. 表面吸附原子和溅射原子的分布都呈现6次旋转对称, 当入射原子能量大于溅射阈值时, 表面吸附原子主要是基体表层原子, 入射原子直接成为表面吸附原子的概率很小. 空位缺陷主要分布在基体的最表层, 当入射原子能量大于溅射阈值时, 基体次表层产生的空位缺陷随入射原子能量的增加而增多.  相似文献   

20.
采用嵌入原子势,运用分子动力学(MD)研究了Ti(0001)表面低能沉积不同能量Ti原子时表面吸附、溅射和空位的变化.低能Ti原子沉积Ti(0001)表面过程中,存在一个溅射能量阈值,其值大约为40-50 eV.入射原子能量低于溅射阈值时,入射原子可以认为是沉积原子;入射原子能量大于溅射阈值时,溅射产额随入射原子能量的增加而线性增加.表面吸附原子和溅射原子的分布都呈现6次旋转对称,当入射原子能量大于溅射阈值时,表面吸附原子主要是基体表层原子,入射原子直接成为表面吸附原子的概率很小.空位缺陷主要分布在基体的最表层,当入射原子能量大于溅射阈值时,基体次表层产生的空位缺陷随入射原子能量的增加而增多.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号