首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
回火温度对40CrNiMo7钢组织与性能的影响   总被引:1,自引:0,他引:1  
通过显微组织观察、拉伸和冲击试验、硬度测试、冲击断口分析等研究了回火温度对40CrNiMo7钢组织与性能的影响。结果表明,40CrNiMo7钢经850℃油淬400~700℃回火后的组织均为回火索氏体+马氏体+碳化物;650℃回火时实现了优良的强韧性匹配;400℃回火时常温强度达到最大,冲击吸收能量则最低,而700℃回火时则反之;随着回火温度的升高,40CrNiMo7钢的硬度逐渐减小。随着试验温度的降低,试验钢强度逐渐升高韧性却逐渐降低,而断后伸长率和断面收缩率基本没有变化。  相似文献   

2.
通过显微组织观察、拉伸和冲击试验、硬度测试等研究了高温回火温度对4330V钢组织及性能的影响。结果表明,4330V钢经880℃油淬560~650℃回火后的组织均为回火索氏体+片状或块状铁素体+碳化物;钢在620℃回火后具有优良的强韧性匹配;560℃回火后,室温强度和布氏硬度达到最大,冲击吸收能量则最低,而650℃回火后则反之。随着回火温度升高,4330V钢的抗拉强度、屈服强度、硬度逐渐下降,冲击吸收能量逐渐升高。  相似文献   

3.
使用直读光谱仪、扫描电镜、X射线衍射仪和力学试验设备,研究了Ni含量对淬回火态40CrNiMo钢的显微组织、残留奥氏体含量、硬度、室温抗拉强度和室温冲击性能的影响。结果表明,随着Ni含量从1.346%增加至1.618%,40CrNiMo钢的显微组织、残留奥氏体含量无明显变化,但α-Fe的晶格畸变增大;在不同回火温度下,试验钢的硬度均提高5~10 HV;450 ℃回火的高Ni含量钢的抗拉强度比低Ni含量钢高78 MPa,抗拉强度的提高幅度则随着回火温度的升高而减小;然而在残留奥氏体含量几乎不变的条件下,Ni含量增加反而会使450、500 ℃回火后钢的冲击吸收能量降低约50%。  相似文献   

4.
通过冲击、拉伸试验、光学显微镜和扫描电镜,研究了钻杆接头用37CrMnMo钢在不同回火温度下的显微组织形貌及强度和冲击性能的影响的变化规律。结果表明,37CrMnMo钢经水淬后于500~640 ℃回火后得到回火索氏体,随回火温度的上升其抗拉强度与屈服强度由平缓降低变为陡降趋势。500 ℃的回火组织中碳化物呈现层片状分布,冲击吸收能量为30.94 J;600 ℃回火后碳化物呈均匀弥散分布,冲击吸收能量为117.49 J;经过640 ℃回火后,显微组织中碳化物粗化,直接导致冲击吸收能量下降。故37CrMnMo钢试样在870 ℃淬火后于不同温度回火,碳化物的形貌对其强韧性起着关键作用。  相似文献   

5.
采用冲击试验机、硬度仪、光学显微镜及高分辨扫描电镜研究了回火温度对新型盾构刀具用钢SDH55强韧性及组织的影响。结果表明:SDH55钢1030℃油淬硬度为60.5 HRC,组织为针状马氏体及未溶碳化物;SDH55钢在500℃回火时,出现了二次硬化峰值;在540~620℃回火时,由于回火软化使硬度随温度升高而不断降低,但冲击吸收能量却呈现先升高后降低的现象,其主要是由二次碳化物形态从杆状变成短杆或球状,最后再变成长条状分布在晶界所导致;从强韧性配合角度考虑,SDH55钢满足盾构刀具服役要求的回火温度应为(540±10)℃,此时,回火硬度为56.0 HRC,室温冲击吸收能量为264 J。  相似文献   

6.
通过Gleeble-1500热模拟试验机测量了26CrMo4钢的相变温度,然后对其进行910 ℃水淬和400~740 ℃回火处理,并用光学显微镜、拉伸试验、硬度试验和冲击试验研究了热轧态和淬火、回火后的显微组织和力学性能。结果表明:26CrMo4钢具有优良的淬透性,910 ℃水淬可得到原奥氏体晶粒细小均匀的马氏体组织。26CrMo4钢的强度和硬度随着回火温度的提高而降低,回火温度在400~600 ℃、600~640 ℃和640~730 ℃之间时,抗拉强度随回火温度升高而下降的速率分别为1.685、1.500和2.822 MPa/℃。26CrMo4钢的冲击性能随着回火温度的升高而提高,700 ℃回火时0 ℃冲击吸收能量达到227 J,但继续提高回火温度至730 ℃时0 ℃冲击吸收能量基本保持不变。26CrMo4钢640 ℃和700 ℃回火后均具有较好的低温冲击性能,-70 ℃冲击吸收能量仍分别可达81 J和110 J。  相似文献   

7.
通过冲击试验、硬度测试、显微组织观察和断口分析研究了不同淬火、回火工艺对SR19热作模具钢微观组织及力学性能的影响,并与H13钢进行了对比。结果表明:960~1060 ℃温度范围内淬火时,SR19钢的硬度比H13钢高3~4 HRC;在高于540 ℃回火时,相同温度下SR19钢的硬度比H13钢要高0.5~1.0 HRC,且SR19钢回火后的冲击吸收能量比H13高40~50 J。增Mo加W增加了纳米析出相的数量,提高了抗回火软化能力和冲击性能。SR19钢的最佳热处理工艺为1020 ℃油淬、560~600 ℃回火,此工艺下的硬度为50.9~54.8 HRC。  相似文献   

8.
《热处理》2017,(2)
对高铁用35CrMo钢、40CrNiMo钢和34CrNiMo6钢淬透性、淬硬性及热处理工艺进行了试验研究。试验结果表明,三种材料中34CrNiMo6钢的淬透性最好;40CrNiMo钢淬硬性较好,但淬硬层深度较浅;35CrMo钢的淬硬性低于40CrNiMo钢,淬透性低于34CrNiMo6钢。三种钢的抗拉强度、屈服强度和硬度均随回火温度的提高而下降,而断后伸长率、冲击韧度则随回火温度的升高而上升。  相似文献   

9.
采用扫描电镜、透射电镜、布氏硬度仪、冲击试验机和拉伸试验机等分析了不同回火温度(580~640℃)对一种Cr-Mo钢衬板材料显微组织和力学性能的影响。结果表明:回火后Cr-Mo钢的组织主要为回火索氏体;随着回火温度的升高,Cr-Mo钢的硬度和抗拉强度降低、冲击吸收能量提高,索氏体组织长大并伴随有碳化物析出长大;Cr-Mo钢衬板材料断裂机制为准解理断裂;当回火温度为600℃时,回火后的Cr-Mo钢有着良好的综合力学性能,其硬度为388 HBW,冲击吸收能量为40.7 J,抗拉强度为1295 MPa。  相似文献   

10.
采用OM、SEM、EDS、相分析、硬度测试和冲击性能试验等分析手段,对比研究Nb含量为0、0.067%和0.270%(质量分数)的H13试验钢淬回火后的组织及力学性能。结果表明,加入Nb后试验钢淬火硬度有所下降;淬火温度提高后,含Nb试验钢的晶粒尺寸小于0Nb试验钢,但含Nb试验钢中存在部分未溶碳化物;3种试验钢回火后的二次硬化峰均出现在510 ℃。经1050 ℃淬火、不同温度回火后,0.067Nb试验钢的冲击吸收能量高于0Nb试验钢。0.27Nb试验钢受到大尺寸碳化物的影响,淬火温度在1080 ℃以下时,冲击吸收能量不及另两种试验钢。  相似文献   

11.
40CrNiMoA钢激光相变硬化技术   总被引:9,自引:1,他引:9  
石岩  徐春鹰  张宏 《金属热处理》2002,27(11):16-18
研究了40CrNiMoA钢激光淬火工艺参数与硬化层深度及硬度之间的相互关系,以及淬硬层微观结构特征。结果表明,随着光斑扫描速度的提高,硬化层深度降低,表面硬度存在一个极大值;随着激光功率的升高,硬化层深度增加,表面硬度也存在一个极大值,激光淬火硬化层依其组织特征,分为完全淬硬区,过渡区及高温回火区。  相似文献   

12.
研究了不同温度“零保温”淬火工艺下,40Cr钢的显微组织与性能的变化规律。结果表明,在850~910 ℃下“零保温”淬火和550 ℃回火后,40Cr钢的硬度、抗拉强度和冲击吸收能量随温度的升高先增加后降低。890 ℃“零保温”淬火和550 ℃回火时,钢的硬度、抗拉强度和冲击吸收能量达到最高值,这些性能均优于同温度下保温淬火时试验钢的性能。40Cr钢“零保温”淬火性能的提高与其淬火后得到的细小板条状马氏体组织、奥氏体晶粒的细化和奥氏体中碳浓度分布不均匀有关。  相似文献   

13.
选用不含Nb钢和含Nb(质量分数,0.021%)钢作为试验材料,采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、布氏硬度测试、冲击和拉伸等试验手段研究试验钢轧制后在不同温度加热淬火+回火及850℃在线淬火+不同温度回火两种热处理工艺下的组织和综合性能。结果表明:再加热淬火+回火工艺下,含Nb钢随淬火温度的提高,强度和韧性都有所提高,在950℃淬火+200℃回火处理下综合性能最佳,其强度为1843 MPa,硬度值为567 HBW,-20℃下的冲击吸收能量为31 J,符合NM500的标准;在线淬火+回火工艺下随着回火温度的提高,试验钢的综合性能降低,但含Nb钢的性能都高于相同条件下的不含Nb钢。含Nb钢在850℃在线淬火+200℃回火处理下综合性能最佳,其强度为1818 MPa,硬度值为562 HBW,-20℃下的冲击吸收能量为30 J,同样达到了NM500的标准。  相似文献   

14.
通过预处理(固溶处理)、等温淬火以及不同温度回火等处理方法,利用光学显微镜、扫描电镜、洛氏硬度计、拉伸试验机、冲击试验机等设备研究了奥氏体化温度对40CrNiMo钢奥氏体晶粒长大速度以及硬度的影响,探索了回火温度对贝氏体/马氏体多相钢微观组织和力学性能的影响。结果显示,预处理期间,奥氏体晶粒随奥氏体化温度的升高首先缓慢增长然后快速长大,然而硬度保持在56 HRC左右。250~500 ℃回火时,大量细小的碳化物析出,微观组织仍然保持原来的板条状,试验钢的强度、硬度降低,塑韧性呈现先降低后升高的趋势;400 ℃回火试样伸长率最低,冲击吸收能量最小,表明400 ℃回火时出现回火脆性;回火温度升高到600 ℃,基体组织发生再结晶,转变为回火索氏体,此时强、硬度最低,冲击吸收能量高达147 J。  相似文献   

15.
徐文芳  张朋彦  杨鹏 《金属热处理》2020,45(11):187-191
对在线淬火型微合金高强结构钢在400~600 ℃范围内进行回火40 min处理,以研究不同回火温度对试验钢显微组织和力学性能的影响。通过光学显微镜、扫描电镜等进行组织观察分析,同时测量试验钢回火后的强度、硬度及-40 ℃冲击吸收能量等进行力学性能分析。试验结果表明:随着回火温度的升高,试验钢强度及硬度整体呈下降趋势,冲击性能整体上升,并在450~500 ℃出现回火脆性区。同时随着回火温度升高,试验钢组织中马氏体逐渐宽化减少,铁素体含量增多。450 ℃回火时,试验钢的组织为回火托氏体,此时其屈服强度和硬度分别为840 MPa和304 HV3,断后伸长率为14.4%,-40 ℃冲击吸收能量为129 J,达到良好综合力学性能。  相似文献   

16.
采用显微硬度仪、摆锤冲击试验和扫描电镜等研究了PRO500超高强钢经200℃~600℃回火处理后的显微组织和力学性能,并利用图像分析软件定量分析了其冲击断口特征。结果表明:从200℃开始板条马氏体随回火温度升高逐渐分解、合并变宽,在250℃时出现第一类回火脆性;从250℃开始随回火温度的升高,实验钢的硬度降低、冲击吸收能量增加,379℃回火时实验钢的综合力学性能最佳,此时硬度和冲击吸收能量分别为398 HV和54.7 J;冲击断口纤维区面积和冲击吸收能量大小随回火温度的升高变化趋势相近,250℃回火时断口观测区韧窝面积占总面积百分比为20.4%,冲击吸收能量最低,为45 J,600℃时该比例升高至44.5%,最大韧窝直径为17.5μm,冲击吸收能量最大,为72.5 J。  相似文献   

17.
通过显微组织分析、室温拉伸试验、冲击试验、硬度试验,研究不同回火制度下1Cr12Ni3MoVN钢的显微组织与力学性能。结果表明,随着回火温度的增加,1Cr12Ni3MoVN钢析出相数量不断增加,对材料的强度、冲击性能具有增强效果;碳化物聚集长大,基体组织逐渐由马氏体向回火索氏体转变,杂质元素在晶界处偏聚而降低了材料的断裂抗性,冲击韧性降低,回火温度应取较低温度;随565 ℃回火时间的延长,1Cr12Ni3MoVN钢抗拉强度、屈服强度、硬度下降,塑性变化不大,冲击吸收能量略有增加,回火保温时间不宜过长;随回火冷却速度的降低,1Cr12Ni3MoVN钢强度先升后降,塑性变化不大,冲击吸收能量显著下降,硬度变化不大,建议以空冷方式进行回火冷却。最佳的回火热处理工艺为565 ℃保温2 h,空冷。  相似文献   

18.
通过对不同热处理状态下的42CrMo合金结构钢的硬度测定和显微组织观察,分析了热处理工艺对合金硬度的影响。结果表明,细杆高频淬火后近表面硬度为689.4 HV1.0,淬硬层平均硬度为434.6 HV0.1;回火后淬硬层平均硬度略有降低;底座高频淬火后淬硬层厚度为1.16 mm,硬度为459.4 HV0.1,表面淬火+回火后淬硬层的厚度为0.96 mm,硬度为464.7 HV0.1。两种热处理工艺均能保证细杆和底座的淬硬层与基体之间形成缓降式硬度梯度过渡。  相似文献   

19.
对40Cr钢在不同搭接率下进行多道电子束扫描表面改性处理,并对其显微组织和力学性能进行了研究。结果表明,经多道电子束扫描表面改性处理,40Cr钢表面搭接区因回火生成回火马氏体及回火索氏体;重熔层中马氏体组织随着搭接率的增大而变得粗大。搭接率为0%时,电子束处理区域的平均显微硬度为627.4 HV0.2;搭接率增大,搭接区域表面显微硬度下降。当搭接率为25%时,试样表面光滑平整,粗糙度为1.083 μm;表面粗糙度随着搭接率的增大先减小后增大;40Cr钢耐磨性较电子束扫描处理前有明显改善。耐磨性随着搭接率的增大先增大后减小。  相似文献   

20.
研究了亚温淬火工艺和原始组织对一种新型射孔枪管用钢组织和性能的影响。结果表明,随亚温淬火温度升高,试验钢的晶粒增大,硬度呈先增大后降低的趋势;随回火温度升高,钢的硬度和强度逐渐降低,断面收缩率和冲击吸收能量逐渐增大;经分析最佳热处理工艺为840 ℃亚温淬火+560 ℃回火,以此工艺下处理后调质态试验钢的综合力学性能最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号