首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Because of frequent co-occurrence of metals with chlorinated organic pollutants, Fe(II), Co(II), Ni(II), and Hg(II) were evaluated for their impact on the dechlorination pathways of PCE and TCE and the subsequent transformation of the initial dechlorination products by FeS. PCE transforms to acetylene via beta-elimination, TCE via hydrogenolysis, and 1,1-DCE via alpha-elimination, while TCE transforms to acetylene via beta-elimination and cis-DCE and 1,1-DCE via hydrogenolysis. Acetylene subsequently transforms in FeS batches, but little transformation of cis-DCE and 1,1-DCE was observed. Branching ratio calculations indicate that the added metals decrease the reductive transformation of PCE and TCE via beta-elimination relative to hydrogenolysis, resulting in a higher production of the toxic DCE byproducts. Nonetheless, acetylene is generally the dominant product. Production of highly water-soluble compound(s) is suspected as a significant source for incomplete mass recoveries. In the transformation of PCE and TCE, the formation of unidentified product(s) is most significant in Co(II)-added FeS batches. Although nearly complete mass recoveries were observed in the other FeS batches, the subsequent transformation of acetylene would lead to the formation of unidentified product(s) over long time periods.  相似文献   

2.
Mackinawite, an iron monosulfide, has been shown to be a potential reductant for chlorinated organic compounds under anaerobic conditions. Chlorinated organic compounds are often found with inorganic contaminants. This study investigates the impact of various transition metals on the reductive dechlorination by mackinawite using a readily degradable chlorinated organic compound, hexachloroethane (HCA). Different classes of transition metals show distinct patterns in their impact on the HCA dechlorination: 10(-3) M Cr(III) and Mn(II) (hard metals) decreased the dechlorination rates, while 10(-4), 10(-3), and 10(-2) M Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) (intermediate/soft metals) increased the rates. The tested hard metals, due to their weak affinity for sulfides, are thought to form surface precipitates of hydroxides around FeS under the experimental conditions with these hydroxides hindering the electron transfer between FeS and HCA. Due to their high affinity for sulfides, however, the tested intermediate/soft metals can react with FeS in various ways: precipitation of pure metal sulfides (MS), formation of metal-substituted FeS by lattice exchange, and coprecipitation of the mixed sulfides in a Fe-M-S system. Fe(II), released as a result of the interaction of FeS with intermediate/soft metals, enhances the HCA dechlorination at the doses of 10(-4) and 10(-3) M through sorbed or dissolved Fe(II) species, while Fe(OH)2(s) formed at the higher dose of 10(-2) M also enhances the reductive dechlorination. Rate increases observed in Co(II)-, Ni(II)-, and Hg(II)-amended systems are not simply explained by the formation of pure MS; instead, metal-substituted FeS or coprecipitated sulfides are thought to be responsible for the significantly increased rates observed in these systems.  相似文献   

3.
The combination of zerovalent metal with a catalytic second metal ion (bimetallic materials) to enhance the dechlorination efficiency and rate of chlorinated compounds has received much attention. Bimetallic materials not only enhance the dechlorination process but also alter the reduction pathway and product distribution. In this study, the efficiency and rate of tetrachloroethylene (PCE) dechlorination by metal-modified zerovalent silicon was investigated as a potential reductant for chlorinated hydrocarbons under anoxic conditions. The X-ray photoelectron spectroscopic (XPS) results showed that metal ions including Ni(II), Cu(II), and Fe(II) could be reduced to their zerovalent forms on the Si surface. The dechlorination of PCE obeyed the pseudo-first-order kinetics, and the pseudo-first-order rate constants (k(obs)) for PCE dechlorination followed the order Ni/Si > Fe/Si > Cu/Si. Addition of Cu(II) lowered the dechlorination efficiency and rate of PCE by Si, while the k(obs) values for PCE dechlorination in the presence of 0.1 mM Fe(II) and Ni(II) were 1.5-3.8 times higher than that by Si alone. In addition, the efficiency and rate of PCE dechlorination increased upon increasing the mass loading of Ni(II) ranging between 0.05 and 0.5 mM and then decreased when the Ni(II) loading was further increased to 1 mM. The scanning electron microscopic (SEM) images and electron probe microanalytical (EPMA) maps showed that the Ni nanoparticles deposited on the Si surface and aggregated to a large particle at 1 mM Ni(II), which clearly depicts that the Ni(II) loading of 0.5 mM is the optimal value to enhance the efficiency and rate of PCE dechlorination by Si. Also, the reaction pathways for PCE dechlorination changed from hydrogenolysis in the absence of Ni(II) to hydrodechlorination when Ni(II) concentrations were higher than 0.05 mM. Results obtained in this study reveal that the metal-deposited zerovalent silicon can serve as an environmentally friendly reductant for the enhanced degradation of chlorinated hydrocarbons for long-term performance.  相似文献   

4.
The combined removal of chlorinated ethenes and heavy metals from a simulated groundwater matrix by zerovalent iron (ZVI) was investigated. In batch, Ni (5-100 mg L(-1)) enhanced trichloroethene (TCE, 10 mg L(-1)) reduction by ZVI (100 g L(-1)) due to catalytic hydrodechlorination by bimetallic Fe0/Ni0. Cr(VI) or Zn (5-100 mg L(-1)) lowered TCE degradation rates by a factor of 2 to 13. Cr(VI) (100 mg L(-1)) in combination with Zn or Ni (50-100 mg L(-1)) inhibited TCE degradation. Addition of 20% H2(g) in the headspace, or of Zn (50-100 mg L(-1)), enhanced TCE removal in the presence of Ni and Cr(VI). Sorption of Zn to ZVI alleviated the Cr(VI) induced inhibition of bimetallic Fe0/Ni0 apparently due to release of protons necessary for TCE hydrodechlorination. In continuous ZVI columns treating tetrachloroethene (PCE, 1-2 mg L(-1)) and TCE (10 mg L(-1)), and a mixture of the metals Cr(VI), Zn(II), and Ni(II) (5 mg (L-1)), the PCE removal efficiency decreased from 100% to 90% in columns operated without heavy metals. The PCE degradation efficiency remained above 99% in columns receiving heavy metals as long as Ni was present. The findings of this study indicate the feasibility and limitations of the combined treatment of mixtures of organic and inorganic pollutants by ZVI.  相似文献   

5.
This study investigated reductive dechlorination of cis-dichloroethylene (cis-DCE) by the reduced Fe phases obtained from in situ precipitation, which involved mixing of Fe(II), Fe(III), and S(-II) solutions. A range of redox conditions were simulated by varying the ratio of initial Fe(II) concentration ([Fe(II)](o)) to initial Fe(III) concentration ([Fe(III)](o)) for iron-reducing conditions (IRC) and the ratio of [Fe(II)](o) to initial sulfide concentration ([S(-II)](o)) for sulfate-reducing conditions (SRC). Significant dechlorination of cis-DCE occurred under highly reducing IRC and iron-rich SRC, suggesting that Fe (oxyhydr)oxides including green rusts are highly reactive with cis-DCE but that Fe sulfide as mackinawite (FeS) is nonreactive. Relative concentrations of sulfate to chloride were also varied to examine the anion impact on cis-DCE dechlorination. Generally, slower dechlorination occurred in the batches with higher sulfate concentrations. As indicated by higher dissolved Fe concentration, the slower dechlorination in the presence of sulfate was probably due to the decreased surface-complexed Fe(II). This study demonstrates that the chemical form of reduced Fe(II) is critical in determining the fate of cis-DCE under anoxic conditions.  相似文献   

6.
Significant carbon isotope fractionation was observed during FeS-mediated reductive dechlorination of tetrachloroethylene (PCE) and trichloroethylene (TCE). Bulk enrichment factors (E(bulk)) for PCE were -30.2 +/- 4.3 per thousand (pH 7), -29.54 +/- 0.83 per thousand (pH 8), and -24.6 +/- 1.1 per thousand (pH 9). For TCE, E(bulk) values were -33.4 +/- 1.5 per thousand (pH 8) and -27.9 +/- 1.3 per thousand (pH 9). A smaller magnitude of carbon isotope fractionation resulted from microbial reductive dechlorination by two isolated pure cultures (Desulfuromonas michiganensis strain BB1 (BB1) and Sulfurospirillum multivorans (Sm)) and a bacterial consortium (BioDechlor INOCULUM (BDI)). The E(bulk) values for biological PCE microbial dechlorination were -1.39 +/- 0.21 per thousand (BB1), -1.33 +/- 0.13 per thousand (Sm), and -7.12 +/- 0.72 per thousand (BDI), while those for TCE were -4.07 +/- 0.48 per thousand (BB1), -12.8 +/- 1.6 per thousand (Sm), and -15.27 +/- 0.79 per thousand (BDI). Reactions were investigated by calculation of the apparent kinetic isotope effect for carbon (AKIEc), and the results suggest that differences in isotope fractionation for abiotic and microbial dechlorination resulted from the differences in rate-limiting steps during the dechlorination reaction. Measurement of more negative E(bulk) values at sites contaminated with PCE and TCE may suggest the occurrence of abiotic reductive dechlorination by FeS.  相似文献   

7.
Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS)   总被引:1,自引:0,他引:1  
Iron sulfides are known to be efficient scavengers of heavy metals. In this study, Hg(II) sorption was investigated using synthetic nanocrystalline mackinawite (a disordered phase) as a function of initial Hg(II) concentration [Hg(II)]0, initial FeS concentration [FeS]0, total chloride concentration CIT, and pH. Hg(II) sorption mechanisms are dependent on relative concentrations of [Hg(II)]0 and [FeS]0 (the molar ratio of [Hg(II)0/[FeS]0). When the molar ratio of [Hg(II)]0/[FeS]o is as low as 0.05, adsorption is mainly responsible for Hg(II) removal, with its contribution to the overall sorption increasing at lower Cl(T). As the molar ratio increases, the adsorption capacity becomes saturated, resulting in precipitation of a sparingly soluble HgS(s). XRD analysis indicates formation of metacinnabar (beta-HgS). Concurrently with HgS(s) precipitation, the released Fe(II) from FeS(s) is resorbed by adsorption at acidic pH and either adsorption or precipitation as Fe (hydr)-oxides at neutral to basic pH. Subsequently, the Fe precipitate formed at neutral to basic pH serves as an adsorbent for Hg(II). Under the conditions where either adsorption or HgS(s) precipitation is dominant, more than 99% of [Hg(II)]0 is immobilized. When the molar ratio of [Hg(II)]0/[FeS]0 exceeds 1, the sulfide concentration is no longer sufficient for HgS(s) precipitation, and formation of chloride salts (Hg2Cl2 at acidic pH and HgCl2 x 3HgO at basic pH) occurs.  相似文献   

8.
Reductive dechlorination of carbon tetrachloride (CT) and tetrachloroethylene (PCE) by zerovalent silicon (ZVS, Si0) and the combination of Si0 with metal iron (Fe0) was investigated as potential reductants for chlorinated hydrocarbons. The X-ray photoelectron spectroscopy (XPS) was used to identify the surface characteristics of Si0. CT and PCE can be completely degraded via sequential reductive dechlorination to form lesser chlorinated homologues by Si0. Productions of chloroform (CF) and trichloroethylene (TCE) accounted for 80% of CT and 65% of PCE dechlorination, respectively. The degradation of CT and PCE by Si0 at pH 8.3 followed pseudo-first-order kinetics, and the normalized surface rate constants (k(sa)) were 0.288 and 0.003 L m(-2) h(-1), respectively, which react more efficiently than zerovalent iron in CT and PCE dechlorination. A linear relationship was also established between pH and the k(sa) value. The XPS results showed that the hydrogenated silicon surface and silicon oxides on the silicon surface were removed during the dechlorination processes, thus providing a relatively clean silicon surface for dechlorination reactions. The combination of zerovalent silicon with iron influences both the dechlorination rate and the distribution of products. Sequential reductive dechlorination was still the main reaction for CT dechlorination by Si0/Fe0, while reductive dechlorination and beta-elimination were the dominant reaction pathways for PCE dechlorination with ethane and ethene as the major end products. Also, the combination of silicon and iron constitutes a buffer system to maintain the pH at a stable value. A 0.3 unit of pH changed upon increasing the amount of Fe by a factor of 35 was observed, depicting that Si0 serves as a pH buffer in Si0/Fe0 system during dechlorination processes.  相似文献   

9.
The dechlorination of carbon tetrachloride (CT) by Fe(II) associated with goethite in the presence of transition metal ions was investigated. X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRPD) were used to characterize the chemical states and crystal phases of transition metals on solid phases, respectively. CT was dechlorinated to chloroform (CF) by 3 mM Fe(II) in 10 mM goethite (25.6 m2 L(-1)) suspensions. The dechlorination followed pseudo-first-order kinetics, and a rate constant (k(obs)) of 0.036 h(-1) was observed. Transition metal ions have different effects on CT dechlorination. The addition of Ni(II), Co(II), and Zn(II) lowered the k(obs) for CT dechlorination, whereas the amendment of 0.5 mM Cu(II) into the Fe(II)-Fe(III) system significantly enhanced the efficiency and the rate of CT dechlorination. The k(obs) for CT dechlorination with 0.5 mM Cu(II) was 1.175 h(-1), which was 33 times greater than that without Cu(II). Also, the dechlorination of CT by surface-bound iron species is pH-dependent, and the rate constants increased from 0.008 h(-1) at pH 4.0 to 1.175 h(-1) at pH 7.0. When the solution contained Cu(II) and Fe(II) without goethite, a reddish-yellow precipitate was formed, and the concentration of Fe(ll) decreased with the increase in Cu(II) concentration. XPS and XRPD analyses suggested the possible presence of Cu2O and ferrihydrite in the precipitate. Small amounts of aqueous Cu(I) were also detected, reflecting the fact that Cu(II) was reduced to Cu(I) by Fe(II). A linear relationship between k(obs) for CT dechlorination and the concentration of Cu(II) was observed when the amended Cu(II) concentration was lower than 0.5 mM. Moreover, the k(obs) for CT dechlorination was dependent on the Fe(II) concentration in the 0.5 mM Cu(II)-amended goethite system and followed a Langmuir-Hinshelwood relationship. These results clearly indicate that Fe(II) serves as the bulk reductant to reduce both CT and Cu(II). The resulting Cull) can further act as a catalyst to enhance the dechlorination rate of chlorinated hydrocarbons in iron-reducing environments.  相似文献   

10.
Metallic iron filings are commonly employed as reducing agents in permeable barriers used for remediating groundwater contaminated by chlorinated solvents. Reactions of trichloroethylene (TCE) and tetrachloroethylene (PCE) with zerovalent iron were investigated to determine the role of atomic hydrogen in their reductive dechlorination. Experiments simultaneously measuring dechlorination and iron corrosion rates were performed to determine the fractions of the total current going toward dechlorination and hydrogen evolution. Corrosion rates were determined using Tafel analysis, and dechlorination rates were determined from rates of byproduct generation. Electrochemical impedance spectroscopy (EIS) was used to determine the number of reactions that controlled the observed rates of chlorocarbon disappearance, as well as the role of atomic hydrogen in TCE and PCE reduction. Comparison of iron corrosion rates with those for TCE reaction showed that TCE reduction occurred almost exclusively via atomic hydrogen at low pH values and via atomic hydrogen and direct electron transfer at neutral pH values. In contrast, reduction of PCE occurred primarily via direct electron transfer at both low and neutral pH values. At low pH values and micromolar concentrations, TCE reaction rates were faster than those for PCE due to more rapid reduction of TCE by atomic hydrogen. At neutral pH values and millimolar concentrations, PCE reaction rates were faster than those for TCE. This shift in relative reaction rates was attributed to a decreasing contribution of the atomic hydrogen reaction mechanism with increasing halocarbon concentrations and pH values. The EIS data showed that all the rate limitations for TCE and PCE dechlorination occurred during the transfer of the first two electrons. Results from this study show that differences in relative reaction rates of TCE and PCE with iron are dependent on the significance of the reduction pathway involving atomic hydrogen.  相似文献   

11.
A laboratory microcosm study and a pilot scale field test were conducted to evaluate biostimulation and bioaugmentation to dechlorinate tetrachloroethene (PCE) to ethene at Kelly Air Force Base. The site groundwater contained about 1 mg/L of PCE and lower amounts of trichloroethene (TCE) and cis-1,2-dichloroethene (cDCE). Laboratory microcosms inoculated with soil and groundwater from the site exhibited partial dechlorination of TCE to cDCE when amended with lactate or methanol. Following the addition of a dechlorinating enrichment culture, KB-1, the chlorinated ethenes in the microcosms were completely converted to ethene. The KB-1 culture is a natural dechlorinating microbial consortium that contains phylogenetic relatives of Dehalococcoides ethenogenes. The ability of KB-1 to stimulate biodegradation of chlorinated ethenes in situ was explored using a closed loop recirculation cell with a pore volume of approximately 64,000 L The pilot test area (PTA) groundwater was first amended with methanol and acetate to establish reducing conditions. Under these conditions, dechlorination of PCE to cDCE was observed. Thirteen liters of the KB-1 culture were then injected into the subsurface. Within 200 days, the concentrations of PCE, TCE, and cis-1,2-DCE within the PTA were all below 5 microg/L, and ethene production accounted for the observed mass loss. The maximum rates of dechlorination estimated from field date were rapid (half-lives of a few hours). Throughout the pilot test period, groundwater samples were assayed for the presence of Dehalococcoides using both a Dehalococcoides-specific PCR assay and 16S rDNA sequence information. The sequences detected in the PTA after bioaugmentation were specific to the Dehalococcoides species in the KB-1 culture. These sequences were observed to progressively increase in abundance and spread downgradient within the PTA. These results confirm that organisms in the KB-1 culture populated the PTA aquifer and contributed to the stimulation of dechlorination beyond cDCE to ethene.  相似文献   

12.
Reductive dechlorination of chlorobenzene (PhCl), trichloroethylene (TCE), tetrachloroethylene (PCE), 1- and 2-chlorobutanes, chloroform, carbon tetrachloride, and 1,1,1- and 1,1,2-trichloroethanes adsorbed on molecular sieve 13X was investigated. The molecular sieve adsorbing the organic chlorides was irradiated with gamma-rays, heated, or allowed to stand at room temperature in a sealed ampule and was then soaked in water. The dechlorination yields were determined from the Cl- concentrations of the supernatant aqueous solutions. It was found that the chlorinated alkanes adsorbed on the molecular sieve are readily dechlorinated on standing at room temperature. The dechlorination at room temperature was limited for TCE and PCE. PhCl was quite stable even at 200 degrees C. gamma-Radiolysis was examined for PhCl, TCE, and PCE at room temperature. The radiation chemical yields of the dechlorination, G(Cl-), were 1.9, 40, and 30 for PhCl, TCE, and PCE, respectively. After 5 h of heating at 200 degrees C, the dechlorination yields for TCE and PCE were 24.5 and 4.3%, respectively. TCE is much more reactive than PCE in the thermal dechlorination, whereas their radiolytic dechlorination yields are comparable. The pH of the supernatant solutions decreased along with the dechlorination.  相似文献   

13.
Batch experiments were performed to assess (i) the influence of pH, solution amendments, and mineral aging on the rates and products of trichloroethylene (TCE) transformation by iron sulfide (FeS) and (ii) the influence of pretreatment of iron metal with NaHS on TCE transformation rates. The relative rates of FeS-mediated transformation of TCE to different products were quantified by branching ratios. Both pseudo-first-order rate constants and branching ratios for TCE transformation by FeS were significantly influenced by pH, possibly due to a decrease in the reduction potential of reactive surface species with increasing pH. Neither Mn2+, expected to adsorb to FeS surface S atoms, nor 2,2'-bipyridine, expected to adsorb to surface Fe atoms, significantly influenced rate constants or branching ratios. FeS that had been aged at 76 degrees C for 3 days was completely unreactive with respect to TCE over 6.5 months, yet this aged FeS transformed hexachloroethane to tetrachloroethylene with a rate constant only slightly lower than that for nonaged FeS. This finding suggests that the oxidation state of iron sulfide minerals in the environment will strongly influence the potential for intrinsic remediation of pollutants such as TCE. Treatment of iron metal with bisulfide significantly increased the pseudo-first-order rate constant for TCE transformation at pH 8.3. This effect was attributed to formation of a reactive FeS coating or precipitate on the iron surface.  相似文献   

14.
Simultaneous release of metals and sulfide in lacustrine sediment   总被引:4,自引:0,他引:4  
A single DGT (diffusive gradient in thin films) probe that could measure metals and sulfide simultaneously and at the same location was deployed in the surface sediment of a productive lake (Esthwaite Water). It contained a layer of AgI that binds sulfide overlying a layer of chelating resin that binds metals. Analysis for sulfide in two dimensions showed local sources of sulfide, 1-5 mm in diameter, at 8-11 cm depth within the sediment. A transect of trace metals measured at 100-microm intervals through the largest sulfide "hot spot" demonstrated concomitant release of Fe, Mn, Cu, Ni, and Co. Substantial supersaturation with respect to metal sulfides was observed for Fe and Co at the site of metal generation, but at a distance of less than 1 mm, solution concentrations were consistent with equilibration with amorphous FeS and CoS phases. Simple mass balance calculations were consistent with Fe being supplied from reductive dissolution of its oxides and with sulfide being supplied from reduction of sulfate. The observed concentrations of Cu, Ni, Co, and Mn could be accounted for by their release from iron oxides without invoking Mn reduction. The metals are removed rapidly (approximately 1 min) at the edge of the hot spot. These first observations of the simultaneous release of trace metals and sulfide are consistent with the known removal of metals by formation of their insoluble sulfides if the in situ kinetics of metal sulfide formation is on this time scale. The coproduction of reduced Fe and S suggests that iron- and sulfate-reducing bacteria may exist together in the same localized zone of actively decomposing organic matter.  相似文献   

15.
The combination of zerovalent silicon (Si(0)) with polyethylene glycol (PEG) is a novel technique to enhance the dechlorination efficiency and rate of chlorinated hydrocarbons. In this study, the dechlorination of tetrachloroethylene (PCE) by Si(0) in the presence of various concentrations of PEG was investigated under anoxic conditions. Several surfactants including cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and Tween 80 were also selected for comparison. Addition of SDS and Tween 80 had little effect on the enhancement of PCE dechlorination, while CTAB and PEG significantly enhanced the dechlorination efficiency and rate of PCE by Si(0) under anoxic conditions. The Langmuir-Hinshelwood model was used to describe the dechlorination kinetics of PCE and could be simplified to pseudo-first-order kinetics at low PCE concentration. The rate constants (k(obs)) for PCE dechlorination were 0.21 and 0.36 h(-1) in the presence of CTAB and PEG, respectively. However, the reaction mechanisms for CTAB and PEG are different. CTAB could enhance the apparent water solubility of PCE in solution containing Si(0), leading to the enhancement of dechlorination efficiency and rate of PCE, while PEG prevented the formation of silicon dioxide, and significantly enhanced the dechlorination efficiency and rate of PCE at pH 8.3 ± 0.2. In addition, the dechlorination rate increased upon increasing PEG concentration and then leveled off to a plateau when the PEG concentration was higher than 0.2 μM. The k(obs) for PCE dechlorination by Si(0) in the presence of PEG was 106 times higher than that by Si(0) alone. Results obtained in this study would be helpful in facilitating the development of processes that could be useful for the enhanced degradation of cocontaminants by zerovalent silicon.  相似文献   

16.
Green rusts (GRs), mixed iron(II)/iron(III) hydroxide minerals found in many suboxic environments, have been shown to reduce a range of organic and inorganic contaminants, including several chlorinated hydrocarbons. Many studies have demonstrated the catalytic activity of transition metal species in the reduction of chlorinated hydrocarbons, suggesting the potential for enhanced reduction by GR in the presence of an appropriate transition metal catalyst. Reductive dechlorination of carbon tetrachloride (CT) was examined in aqueous suspensions of GR amended with Ag(I), Au(III), or Cu(II). The CT reduction rates were greatly increased for systems amended with Cu(II), Au(III), and Ag(I) (listed in order of increasing rates) relative to GR alone. Observed intermediates and products included chloroform, dichloromethane, chloromethane, methane, acetylene, ethene, ethane, carbon monoxide, tetrachloroethene, and various nonchlorinated C3 and C4 compounds. Product distributions for the reductive dechlorination of CT were highly dependent on the transition metal used. A reaction pathway scheme is proposed in which CT is reduced primarily to methane and other nonchlorinated end products, largely through a series of one-electron reductions forming radicals and carbenes/carbenoids. Recently, X-ray absorption fine structure analysis of aqueous GR suspensions amended with Ag(I), Au(III), or Cu(II) showed that the metals were reduced to their zerovalent forms. A possible mechanism for CT reduction is the formation of a galvanic couple involving the zerovalent metal and GR, with reduction of CT occurring on the surface of the metal and GR serving as the bulk electron source. The enhanced reduction of CT by GR suspensions amended with Ag(I), Au(III), or Cu(II) may prove useful in the development of improved materials for remediation of chlorinated organic contaminants.  相似文献   

17.
Pretreatment zones (PTZs) composed of sand, 10% zero-valent iron [Fe(0)]/sand, and 10% pyrite (FeS2)/sand were examined for their ability to prolong Fe(0) reactivity in above ground column reactors and a subsurface permeable reactive barrier (PRB). The test site had an acidic, oxic aquifer contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE). The 10% FeS2 and 10% Fe(0) PTZs removed dissolved oxygen and affected the pH and E(h) in the PTZ. None of the PTZs had any effect on pH or E(h) in the 100% Fe(0) zone. Nitrate and sulfate were removed more quickly in the Fe(0) zones preceded by either the 10% Fe(0) PTZ or 10% FeS2. PCE first-order degradation rate constants (k(obs)) decreased significantly (> 80%) with increasing column pore volumes regardless of the PTZ material used. k(obs) finally leveled off after approximately 1 yr of operation. The column results predict that the PRB will experience a breakthrough of PCE in 3-5 yr and illustrate the importance of incorporating temporal variations in degradation rate constants when designing PRBs.  相似文献   

18.
Chlorine isotope fractionation during reductive dechlorination of trichloroethene (TCE) and tetrachloroethene (PCE) to cis-1,2-dichloroethene (cDCE) by anaerobic bacteria was investigated. The changes in the 37Cl/35Cl ratio observed during the one-step reaction (TCE to cDCE) can be explained by the regioselective elimination of chlorine accompanied by the Rayleigh fractionation. The fractionation factors (alpha) of the TCE dechlorination by three kinds of anaerobic cultures were approximately 0.994-0.995 at 30 degrees C. The enrichment of 37Cl in the organic chlorine during the two-step reaction (PCE to cDCE) can be explained by the random elimination of one chlorine atom in the PCE molecule followed by the regioselective elimination of one chlorine atom in the TCE molecule. The fractionation factors for the first step of the PCE dechlorination with three kinds of anaerobic cultures were estimated to be 0.987-0.991 at 30 degrees C using a mathematical model. Isotope fractionation during the first step would be the primary factor for the chlorine isotope fractionation during the PCE dechorination to cDCE. The developed models can be utilized to evaluate the fractionation factors of regioselective and multistep reactions.  相似文献   

19.
Experiments to assess metabolic reductive dechlorination (chlororespiration) at high concentration levels consistent with the presence of free-phase tetrachloroethene (PCE) were performed using three PCE-to-cis-1,2-dichloroethene (cis-DCE) dechlorinating pure cultures (Sulfurospirillum multivorans, Desulfuromonas michiganensis strain BB1, and Geobacter lovleyi strain SZ) and Desulfitobacterium sp. strain Viet1, a PCE-to-trichloroethene (TCE) dechlorinating isolate. Despite recent evidence suggesting bacterial PCE-to-cis-DCE dechlorination occurs at or near PCE saturation (0.9-1.2 mM), all cultures tested ceased dechlorinating at approximately 0.54 mM PCE. In the presence of PCE dense nonaqueous phase liquid (DNAPL), strains BB1 and SZ initially dechlorinated, but TCE and cis-DCE production ceased when aqueous PCE concentrations reached inhibitory levels. For S. multivorans, dechlorination proceeded at a rate sufficient to maintain PCE concentrations below inhibitory levels, resulting in continuous cis-DCE production and complete dissolution of the PCE DNAPL. A novel mathematical model, which accounts for loss of dechlorinating activity at inhibitory PCE concentrations, was developed to simultaneously describe PCE-DNAPL dissolution and reductive dechlorination kinetics. The model predicted that conditions corresponding to a bioavailability number (Bn) less than 1.25 x 10(-2) will lead to dissolution enhancement with the tested cultures, while conditions corresponding to a Bn greater than this threshold value can result in accumulation of PCE to inhibitory dissolved-phase levels, limiting PCE transformation and dissolution enhancement. These results suggest that microorganisms incapable of dechlorinating at high PCE concentrations can enhance the dissolution and transformation of PCE from free-phase DNAPL.  相似文献   

20.
cis-Dichloroethene (DCE) and vinyl chloride (VC) often accumulate in contaminated aquifers in which tetrachloroethene (PCE) or trichloroethene (TCE) undergo reductive dechlorination. "Dehalococcoides ethenogenes" strain 195 is the first isolate capable of dechlorinating chloroethenes past cis-DCE. Strain 195 could utilize commercially synthesized cis-DCE as an electron acceptor, but doses greater than 0.2 mmol/L were inhibitory, especially to PCE utilization. To test whether the cis-DCE itself was toxic, or whether the toxicity was due to impurities in the commercial preparation (97% nominal purity), we produced cis-DCE biologically from PCE using a Desulfitobacterium sp. culture. The biogenic cis-DCE was readily utilized at high concentrations by strain 195 indicating that cis-DCE was not intrinsically inhibitory. Analysis of the commercially synthesized cis-DCE by GC/mass spectrometry indicated the presence of approximately 0.4% mol/mol chloroform. Chloroform was found to be inhibitory to chloroethene utilization by strain 195 and at least partially accounts for the inhibitory activity of the synthetic cis-DCE. VC, a human carcinogen that accumulates to a large extent in cultures of strain 195, was not utilized as a growth substrate, and cultures inoculated into medium with VC required a growth substrate, such as PCE, for substantial VC dechlorination. However, high concentrations of PCE or TCE inhibited VC dechlorination. Use of a hexadecane phase to keep the aqueous PCE concentration low in cultures allowed simultaneous utilization of PCE and VC. At contaminated sites in which "D. ethenogenes" or similar organisms are present, biogenic cis-DCE should be readily dechlorinated, chloroform as a co-contaminant may be inhibitory, and concentrations of PCE and TCE, except perhaps those near the source zone, should allow substantial VC dechlorination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号