首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 468 毫秒
1.
提出一种干涉合成孔径声纳新体制:采用多个发射阵和一条接收阵的收发阵结构,通过对正交回波信号进行分离和分别成像处理得到多幅来自不同收发路径的合成孔径图像,将这些合成孔径图像进行干涉处理,实现了干涉合成孔径三维声成像;论证了新体制的可行性;论述了新体制相对于已有体制的优越性。  相似文献   

2.
贾磊  唐劲松  王飞 《声学技术》2011,(4):350-353
在合成孔径声纳(Synthetic Aperture Sonar,SAS)成像中,多接收阵模式通常采用等效相位中心(Displaced Phase Center,DPC)近似处理方法,它实质上是将多接收阵回波数据与单接收阵回波数据的区别看成系统误差,在成像处理前或成像处理过程中补偿掉该系统误差,但是该系统误差具有空变特...  相似文献   

3.
多子阵双站合成孔径声纳成像算法   总被引:1,自引:0,他引:1       下载免费PDF全文
SAS测绘率是大面积海底测绘的一个重要指标,多子阵的方法已经在常规单站SAS的实际系统中取得了良好的效果。针对双站合成孔径声纳(双站SAS)测绘速率受空间降采样率限制的问题,该本文首先给出了发射站固定的双站SAS模型,分析了该模型双站SAS的测绘率。为了提高双站SAS的测绘率,本文中提出了发射站固定下的多子阵双站合成孔径声纳成像方法,并给出了严格的数学模型,形成了多子阵双站SAS系统设计方案,提高了系统的测绘率。文章最后给出了基于波束形成逐点算法多子阵双站SAS的成像仿真,仿真结果验证了方法的有效性。  相似文献   

4.
在常规单站SAS系统中,多子阵技术是提高测绘率的一个有效方法,针对发射站固定的双站SAS模型,多子阵技术同样可以用来解决测绘率与降空间采样率的矛盾,但是当"停-走-停"假设不再成立时,将引入相位误差项,降低双站SAS的成像质量,针对该问题在原有多子阵逐点成像算法的基础上,研究了发射站固定的双站SAS基阵运动引起的相位误差,提出了多子阵双站合成孔径声纳带相位补偿的逐点成像算法,在建立多子阵双站SAS数学模型的同时,形成了新的多子阵双站SAS系统方案设计。并给出了改进的波束形成逐点算法和仿真实验。改进的逐点算法并未改进运算量大小,新方法能够改善成像效果,仿真实验验证了该方法的有效性。多子阵双站合成孔径声纳成像的逐线算法有待进一步研究。  相似文献   

5.
针对采用多接收阵技术的合成孔径声纳(SAS)成像中普遍存在的不满足停走停假设和方位向采样非均匀等问题,在深入分析了停走停假设和方位向的非均匀采样对成像造成影响的基础上,给出一种可用于方位向非均匀采样多接收阵合成孔径声纳的chirp scaling (CS)成像算法,它较为精确地补偿了非停走停模式带来的相位误差,因而适用于宽测绘带远距离SAS成像.仿真和试验均证明了该方法的有效性.  相似文献   

6.
针对现有斜视多子阵合成孔径声呐成像算法忽略了"非停走停"假设的孔径依赖性和阵元依赖性,导致中等斜视时成像效果差的问题,提出了一种基于级数反演方法(Method of Series Reversion, MSR)的中等斜视多子阵合成孔径声呐距离多普勒算法(Range Doppler Algorithm, RDA)。首先,为了解决"非停走停"假设孔径依赖的问题,直接对精确距离史在波束中心处进行泰勒级数展开,得到近似距离史,并借用MSR求得近似距离史对应窄带回波信号的二维谱解析解。然后,为了解决阵元依赖的问题,使用基于MSR的RDA分别对每个子阵单独成像,再通过将每个子阵的成像结果进行相干叠加的方式消除单个子阵欠采样带来的混叠现象,得到完整的成像结果。最后,通过与现有算法的仿真对比实验,验证了该算法的有效性。  相似文献   

7.
针对多子阵合成孔径声纳(Synthetic Aperture Sonar,SAS)在方位向上非均匀采样对后续成像处理带来的方位向失真的影响,给出了基于滤波器组的方位向非均匀采样信号重构算法.该算法利用SAS方位向周期性非均匀采样信号与经过分析滤波器组的信号之间的相似性,将周期非均匀采样信号通过合成滤波器组进行重构得到均...  相似文献   

8.
根据回波数据对波束范围内各目标合成孔径成像的贡献,将其变换为一个图像矩阵,不同回波数据的图像矩阵相干叠加,完成合成孔径处理。首次采用矩阵运算,相比于传统逐点延时求和向量运算,成像效率提高了一倍。提出了一种移位成像运动误差补偿算法,克服了传统补偿算法存在的相位误差方位空变性的影响,实现运动误差的精确补偿。仿真和试验数据处理结果都表明该算法具有成像效率高和运动误差补偿精确的优点。  相似文献   

9.
杨旭东  黄建国  汤琦 《声学技术》2006,25(6):628-634
在过去十几年里,为了增加拖曳线列阵系统的空间增益、提高方位分辨率,各种合成孔径技术应运而生。针对AUV舷侧阵系统水下目标远程探测的研究需要,给出了基于重叠互相关器的合成孔径处理算法(OCSAP),这种方法是在假设AUV旁侧阵匀速直线航行前提下,通过在波束域利用FFT变换合成孔径,并且在连续的时间间隔内对子孔径信号进行相关处理来实现的。在对该算法进行计算机仿真研究的基础上,在消声水池中进行了8阵元合成48阵元以及单阵元合成8阵元的逆合成孔径实验研究,两种实验结果均验证了OCSAP算法的有效性和可行性。实验结果表明合成孔径处理与常规物理孔径处理相比具有较好的鲁棒性,并且在接收信号时域相关长度大于合成孔径所需时间的水下或海洋环境里,合成阵增益与等长的物理阵增益基本相等。  相似文献   

10.
被动合成孔径算法利用重叠相关法求解运动短线阵连续两批测量序列的相位相干因子来合成虚拟阵元以扩展阵列的有效孔径。提出了改善相位相干因子求解精度的两种修正被动合成孔径算法:交叉重叠算法和数据扩展算法。对海上实录的目标宽带信号进行被动合成孔径处理,并与GFETAM算法性能进行了比较,证实能进一步提高短线阵的方位分辨力。  相似文献   

11.
张友文  张殿伦  田坦  孙大军 《声学技术》2007,26(6):1094-1097
单接收基元合成孔径声呐基阵的速度是严格受到限制的,这主要是由于为了保证方位向不出现栅瓣,方位的采样间隔必须小于换能器的半径。通过使用Vernier阵技术可以增加声呐平台的速度,同时在相同的时间内获得比单个接收基元合成孔径声呐更大的测绘面积。虽然我们可以通过预处理把多接收基元的回波数据转换成单接收基元的回波数据,但是这种处理需要耗费大量的时间,因此最终影响整个合成孔径处理算法的效能。文章提供了一个高效的多接收基元合成孔径声呐数据融合方法,该方法主要是利用了快速的傅里叶变换算法把数据变换到频域,然后再进行数据预处理,因此提高了数据融合的有效性,水池试验结果表明该算法是有效的和精确的。  相似文献   

12.
陈强  田杰  刘维  黄海宁  张春华 《声学技术》2013,32(4):273-276
随着成像声纳技术的发展,声纳图像的目标检测与识别逐渐成为数字图像处理领域的一个重要研究课题。合成孔径声纳图像含有丰富的纹理特征,而灰度共生矩阵具有丰富的特征参数,可以从不同的角度对纹理进行细致刻画。采用灰度共生矩阵可以描述合成孔径声纳图像纹理方面的特征,通过计算灰度共生矩阵在方位向和距离向的能量、相关性、对比度和熵值,并构造特征向量,可以对合成孔径声纳图像中的目标进行准确检测。从实验结果可以看出,基于纹理信息可以准确实现合成孔径声纳图像的目标检测。  相似文献   

13.
Imaging using synthetic aperture techniques is a mature technique with a host of different reconstruction algorithms available. Often the same basic algorithm has a different name depending on where the particular algorithm is used, since it may have originated from the medical, nondestructive testing, geological, or remote sensing fields. All this adds to confusion for the nonspecialist. This article gives a short historical precise of active synthetic aperture imaging as it applies to airborne, spaceborne, and underwater remote sensing systems using either radar or sonar, then defines some generic imaging geometry and places all the usable synthetic aperture reconstruction algorithms in a unified framework. This is done by the introduction of mapping operators, which simplify the mapping or reformatting of data from one sampling grid to another. Using these operators, readers can see how strip-map synthetic aperture systems (both radar- and sonar-based) differ from spotlight synthetic aperture systems, how the various algorithms fit together, and how the chirp-scaling algorithm is likely to be the reconstruction algorithm of choice for most future strip-map systems, and just why that should be so. Multilook processing and methods to deal with undersampled apertures using postdetection digital spotlighting are put into the same unified framework, as both of these techniques are frequent adjuncts to synthetic aperture imaging. © 1997 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 8, 343–358, 1997  相似文献   

14.
姚永红  张旭 《声学技术》2022,41(6):923-928
文章提出了一种基于极坐标格式算法(Polar Format Algorithm,PFA)进行聚束多子阵合成孔径声呐成像的改进方法,建立了非“停-走-停”条件下的斜视成像模型,推导了信号由时域到波数域的解析表达式,给出了信号处理流程。该方法首先使用场景中心点的精确距离史对平台运动误差进行补偿,并通过极坐标算法处理得到粗聚焦的图像。其次,为了解决非场景中心点的残余空变相位误差的补偿问题,对粗聚焦图像进行分块自聚焦处理,使场景边缘点的聚焦效果得到改善。最后,经过子图拼接及几何校正后得到完整的精聚焦图像。仿真及分析结果表明,该方法提高了方位向性能指标,同时也能准确补偿平台运动误差,可以很好地应用于多子阵声呐成像。该方法在大运动误差、大斜视情况下仍具有较好的鲁棒性。  相似文献   

15.
张友文  孙大军  田坦 《声学技术》2006,25(4):271-275
基于两步处理算法和ChirpScaling算法,提出一种适用于条带式成像算法的通用高分辨聚束式合成孔径声呐(SAS)模型。该模型结合了谱分析(SPECAN)算法和ChirpScaling算法的优点,算法首先采用deramp和升采样处理技术实现方位的粗聚焦,消除了聚束式SAS特有的方位频谱混迭现象,然后应用ChirpScaling原理实现距离的精确聚焦,并补偿deramp处理引起的方位相位误差,实现方位精聚焦。基于该通用模型,给出了实现的步骤,整个算法无需任何插值操作,只需复乘和FFT即可完成。该算法适用于宽测绘带高分辨率聚束式SAS的精确而高效成像处理。最后,通过计算机仿真,验证了该通用模型的有效性。  相似文献   

16.
FFBP算法在合成孔径声纳成像中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
刘维  张春华  刘纪元 《声学技术》2009,28(5):572-576
时域合成孔径成像算法可以更好地适应多子阵造成的方位向采样不均匀问题,并且具有存储空间小、并行处理方便的优点。但精确时域算法运算量非常大,快速分块反向传播投影(Fast Factorized Back Projection,FFBP)成像算法则可以大大降低成像计算量。详细分析了FFBP声程误差的距离效应、孔径合并策略和图像分裂策略、成像的计算量等关键问题,并给出了仿真和实测数据成像结果。通过对仿真和实测成像结果的分析表明:FFBP算法可以提高计算效率,适用于实时合成孔径声纳成像系统。  相似文献   

17.
陈敬军  曾赛 《声学技术》2023,42(4):440-445
水下小目标精细成像对于正确识别水下目标具有重要意义。目前,多波束成像声呐和条带合成孔径声呐是获取水下小目标图像的主要手段。水下目标的判别主要利用了目标图像的亮点特征,即使是同一目标从不同方位观测时得到的结果也可能差异较大,这给快速识别确认目标带来了困难。为解决该问题,提出了利用圆周合成孔径声呐对水下小目标进行水声层析成像信号处理方法,提高了声呐的多角度融合观测能力。仿真及试验数据处理结果表明,合成孔径声呐层析成像方法能够获得目标外形轮廓精细特征,有利于水下小目标的正确识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号