首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.  相似文献   

2.
Redox status and inflammation are related to the pathogenesis of the majority of diseases. Therefore, understanding the role of specific food-derived molecules in the regulation of their specific pathways is a relevant issue. Our previous studies indicated that K-8-K and S-10-S, milk and soy-derived bioactive peptides, respectively, exert antioxidant effects through activation of the Keap1/Nrf2 pathway. A crosstalk between Nrf2 and NF-κB, mediated by the action of heme oxygenase (HO-1), is well known. On this basis, we studied if these peptides, in addition to their antioxidant activity, could exert anti-inflammatory effects in human cells. First, we observed an increase of HO-1 expression in Caco-2 cells treated with K-8-K and S-10-S, following the activation of the Keap1/Nrf2 pathway. Moreover, when cells are treated with the two peptides and stimulated by TNF-α, the levels of NF-κB in the nucleus decreased in comparison with TNF-α alone. In the same conditions, we observed the downregulation of the gene expression of proinflammatory cytokines (IL1B, IL6, and TNF), while the anti-inflammatory cytokine gene, IL1RN, was upregulated in Caco-2 cells processed as reported above. Then, when the cells were pretreated with the two peptides and stimulated with LPS, a different proinflammatory factor, (TNF-α) was estimated to have a lower secretion in the supernatant of cells. In conclusion, these observations confirmed that Nrf2-activating bioactive peptides, K-8-K and S-10-S, exerted anti-inflammatory effects by inhibiting the NF-κB pathway.  相似文献   

3.
For bioactive milk peptides to be relevant to infant health, they must be released by gastrointestinal proteolysis and resist further proteolysis until they reach their site of activity. The intestinal tract is the likeliest site for most bioactivities, but it is currently unknown whether bioactive milk peptides are present therein. The purpose of the present study was to identify antimicrobial and bifidogenic peptides in the infant intestinal tract. Milk peptides were extracted from infant intestinal samples, and the activities of the bulk peptide extracts were determined by measuring growth of Escherichia coli, Staphylococcus aureus, and Bifidobacterium longum spp. infantis after incubation with serial dilutions. The peptide profiles of active and inactive samples were determined by peptidomics analysis and compared to identify candidate peptides for bioactivity testing. We extracted peptides from 29 intestinal samples collected from 16 infants. Five samples had antimicrobial activity against S. aureus and six samples had bifidogenic activity for B. infantis. We narrowed down a list of 6645 milk peptides to 11 candidate peptides for synthesis, of which 6 fully inhibited E. coli and S. aureus growth at concentrations of 2500 and 3000 µg/mL. This study provides evidence for the potential bioactivity of milk peptides in the infant intestinal tract.  相似文献   

4.
Diabetes mellitus is a major public health concern associated with high mortality and reduced life expectancy. The alarming rise in the prevalence of diabetes is linked to several factors including sedentary lifestyle and unhealthy diet. Nutritional intervention and increased physical activity could significantly contribute to bringing this under control. Food-derived bioactive peptides and protein hydrolysates have been associated with a number health benefits. Several peptides with antidiabetic potential have been identified that could decrease blood glucose level, improve insulin uptake and inhibit key enzymes involved in the development and progression of diabetes. Dietary proteins, from a wide range of food, are rich sources of antidiabetic peptides. Thus, there are a number of benefits in studying peptides obtained from food sources to develop nutraceuticals. A deeper understanding of the underlying molecular mechanisms of these peptides will assist in the development of new peptide-based therapeutics. Despite this, a comprehensive analysis of the antidiabetic properties of bioactive peptides derived from various food sources is still lacking. Here, we review the recent literature on food-derived bioactive peptides possessing antidiabetic activity. The focus is on the effectiveness of these peptides as evidenced by in vitro and in vivo studies. Finally, we discuss future prospects of peptide-based drugs for the treatment of diabetes.  相似文献   

5.
Inflammatory bowel diseases (IBD) comprises of ulcerative colitis (UC) and Cohn’s disease (CD) as two main idiopathic pathologies resulting in immunologically mediated chronic inflammatory conditions. Several bioactive peptides and hydro lysates from natural sources have now been tested in animal models of human diseases for potential anti-inflammatory effects. Eggshell membrane (ESM) is a well-known natural bioactive material. In this study, we aim to study the anti-inflammatory activity of ESM hydro lysate (AL-PS) in vitro and in vivo. In vitro, AL-PS was shown to inhibit pro-inflammatory cytokine IL-8 secretion. In vivo treatment with AL-PS was shown to reduce dextran sodium sulphate (DSS)-induced weight loss, clinical signs of colitis and secretion of interleukin (IL)-6 (p < 0.05). In addition, treatment with AL-PS also attenuated the severity of intestinal inflammation via down-regulation of IL-10 an anti-inflammatory cytokine. This validates potential benefits of AL-PS as a novel preventative target molecule for treatment of IBD.  相似文献   

6.
Enzymatic hydrolysis of food-derived proteins to produce bioactive peptides could activate food functions such as antihypertension. However, the diversity of enzymatic hydrolysis products can reduce bioactive peptides’ efficacy. Highly specific proteases can homogenize the hydrolysis products to reduce the production of impotent peptides. In this study, we successfully obtained M. xanthus prolyl endopeptidase mutant Y451M by constraint/free molecular dynamics simulations and binding energy calculations. The specificity of Y451M for proline was increased by 286 % compared to WT, while its activity was almost unchanged. Milk-derived substrates processed with Y451M showed an antihypertensive effect that was 567 % higher than without enzymes. The ability to activate food antihypertension increased 152 % and the use of enzyme by 192 % compared with WT. Specific proteases are thus valuable tools in the processing of complex substrates to obtain bioactive peptides.  相似文献   

7.
Food proteins and peptides are able to exert a variety of well-known bioactivities, some of which are related to well-being and disease prevention in humans and animals. Currently, an active trend in research focuses on chronic inflammation and oxidative stress, delineating their major pathogenetic role in age-related diseases and in some forms of cancer. The present study aims to investigate the potential effects of pseudocereal proteins and their derived peptides on chronic inflammation and oxidative stress. After purification and attribution to protein classes according to classic Osborne’s classification, the immune-modulating, antioxidant, and trypsin inhibitor activities of proteins from quinoa (Chenopodium quinoa Willd.), amaranth (Amaranthus retroflexus L.), and buckwheat (Fagopyrum esculentum Moench) seeds have been assessed in vitro. The peptides generated by simulated gastro-intestinal digestion of each fraction have been also investigated for the selected bioactivities. None of the proteins or peptides elicited inflammation in Caco-2 cells; furthermore, all protein fractions showed different degrees of protection of cells from IL-1β-induced inflammation. Immune-modulating and antioxidant activities were, in general, higher for the albumin fraction. Overall, seed proteins can express these bioactivities mainly after hydrolysis. On the contrary, higher trypsin inhibitor activity was expressed by globulins in their intact form. These findings lay the foundations for the exploitation of these pseudocereal seeds as source of anti-inflammatory molecules.  相似文献   

8.
Genomic and phylogenetic analyses of various invertebrate phyla revealed the existence of genes that are evolutionarily related to the vertebrate’s decapeptide gonadotropin-releasing hormone (GnRH) and the GnRH receptor genes. Upon the characterization of these gene products, encoding peptides and putative receptors, GnRH-related peptides and their G-protein coupled receptors have been identified. These include the adipokinetic hormone (AKH) and corazonin (CRZ) in insects and their cognate receptors that pair to form bioactive signaling systems, which network with additional neurotransmitters/hormones (e.g., octopamine and ecdysone). Multiple studies in the past 30 years have identified many aspects of the biology of these peptides that are similar in size to GnRH and function as neurohormones. This review briefly describes the main activities of these two neurohormones and their receptors in the fruit fly Drosophila melanogaster. The similarities and differences between Drosophila AKH/CRZ and mammalian GnRH signaling systems are discussed. Of note, while GnRH has a key role in reproduction, AKH and CRZ show pleiotropic activities in the adult fly, primarily in metabolism and stress responses. From a protein evolution standpoint, the GnRH/AKH/CRZ family nicely demonstrates the developmental process of neuropeptide signaling systems emerging from a putative common ancestor and leading to divergent activities in distal phyla.  相似文献   

9.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related immunosuppressive peptides. However, the underlying mechanisms through which these peptides regulate microglial activity are not fully understood. Using lipopolysaccharide (LPS) to induce an inflammatory challenge, we tested whether PACAP or VIP differentially affected microglial activation, morphology and cell migration. We found that both peptides attenuated LPS-induced expression of the microglial activation markers Iba1 and iNOS (### p < 0.001), as well as the pro-inflammatory mediators IL-1β, IL-6, Itgam and CD68 (### p < 0.001). In contrast, treatment with PACAP or VIP exerted distinct effects on microglial morphology and migration. PACAP reversed LPS-induced soma enlargement and increased the percentage of small-sized, rounded cells (54.09% vs. 12.05% in LPS-treated cells), whereas VIP promoted a phenotypic shift towards cell subpopulations with mid-sized, spindle-shaped somata (48.41% vs. 31.36% in LPS-treated cells). Additionally, PACAP was more efficient than VIP in restoring LPS-induced impairment of cell migration and the expression of urokinase plasminogen activator (uPA) in BV2 cells compared with VIP. These results suggest that whilst both PACAP and VIP exert similar immunosuppressive effects in activated BV2 microglia, each peptide triggers distinctive shifts towards phenotypes of differing morphologies and with differing migration capacities.  相似文献   

10.
Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells.  相似文献   

11.
Abstract

In the recent years, extensive research is under way about the use of natural bioactive compounds and production of functional foods to increase community health and reduce the risk of various food-related diseases. Among different bioactive compounds, the health benefits of peptides and protein hydrolysates make these compounds as nutraceutical food-additives in the formulation of functional foods. But due to physicochemical instability, hygroscopicity and bitterness, direct use of the bioactive peptides in food formulations is difficult. Encapsulation of these compounds in different carriers is one of the most common techniques to overcome the mentioned disadvantages. Among different techniques of encapsulation, spray-drying is the most economical and flexible process for reduction of hygroscopicity, masking of unpleasant-flavors and increasing the stability of bioactive peptides. In this study, the health benefits of peptides and hydrolysates, their disadvantages and applications of microencapsulation by spray-drying technique have been discussed. Also, the most recent results concerning the effect of encapsulation process with different carriers on physicochemical properties, physical and antioxidant stability, masking of bitterness and morphological characteristics of spray-dried powders loaded with bioactive peptides have been investigated.  相似文献   

12.
Bioactive peptides from Ixora coccinea Linn flowers have been reported to have anticancer activity against various cancer cells. Zinc oxide nanoparticle is the promising metal nanoparticle for anticancer applications. In the present work, ZnO was synthesized using I. coccinea Linn flower extract. The synthesized ZnO nanoparticle was found as phytonanocomposite of ZnO nanoparticle and bioactive components. The synthesized ZnO phytonanocomposite was confirmed using UV Spectroscopic analysis with maximum wavelength at 357.6 nm. The presence of bioactive peptides in the nanophytocomposite was confirmed using FT-IR analysis with strong peaks at 3402 and 1629 cm?1. The particle size and surface characteristics of bioactive phytonanocomposite of ZnO was studied using Scanning Electron Microscope. The anticancer activity of zinc oxide nanocomposite of I. coccinea Linn flower extract was found to be efficient on MCF-7 cell line.  相似文献   

13.
Palmitoylethanolamide (PEA) is an N-acylethanolamide produced on-demand by the enzyme N-acylphosphatidylethanolamine-preferring phospholipase D (NAPE-PLD). Being a key member of the larger family of bioactive autacoid local injury antagonist amides (ALIAmides), PEA significantly improves the clinical and histopathological stigmata in models of ulcerative colitis (UC). Despite its safety profile, high PEA doses are required in vivo to exert its therapeutic activity; therefore, PEA has been tested only in animals or human biopsy samples, to date. To overcome these limitations, we developed an NAPE-PLD-expressing Lactobacillus paracasei F19 (pNAPE-LP), able to produce PEA under the boost of ultra-low palmitate supply, and investigated its therapeutic potential in a murine model of UC. The coadministration of pNAPE-LP and palmitate led to a time-dependent release of PEA, resulting in a significant amelioration of the clinical and histological damage score, with a significantly reduced neutrophil infiltration, lower expression and release of pro-inflammatory cytokines and oxidative stress markers, and a markedly improved epithelial barrier integrity. We concluded that pNAPE-LP with ultra-low palmitate supply stands as a new method to increase the in situ intestinal delivery of PEA and as a new therapeutic able of controlling intestinal inflammation in inflammatory bowel disease.  相似文献   

14.
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31–43, P31–43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31–43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31–43 in controls, mimicking the celiac cellular phenotype.  相似文献   

15.
Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC), are a significant source of morbidity and mortality worldwide. Epidemiological data have shown that IBD patients are at an increased risk for the development of CRC. IBD-associated cancer develops against a background of chronic inflammation and oxidative stress, and their products contribute to cancer development and progression. Therefore, the discovery of novel drugs for the treatment of intestinal diseases is urgently needed. Licorice (Glycyrrhiza glabra) has been largely used for thousands of years in traditional Chinese medicine. Licorice and its derived compounds possess antiallergic, antibacterial, antiviral, anti-inflammatory, and antitumor effects. These pharmacological properties aid in the treatment of inflammatory diseases. In this review, we discuss the pharmacological potential of bioactive compounds derived from Licorice and addresses their anti-inflammatory and antioxidant properties. We also discuss how the mechanisms of action in these compounds can influence their effectiveness and lead to therapeutic effects on intestinal disorders.  相似文献   

16.
Celiac disease (CD) is an autoimmune disease characterized by an altered immune response stimulated by gliadin peptides that are not digested and cause damage to the intestinal mucosa. The aim of this study was to investigate whether the postbiotic Lactobacillus paracasei (LP) could prevent the action of gliadin peptides on mTOR, autophagy, and the inflammatory response. Most of the experiments performed were conducted on intestinal epithelial cells Caco-2 treated with a peptic-tryptic digest of gliadin (PTG) and P31-43. Furthermore, we pretreated the Caco-2 with the postbiotic LP before treatment with the previously described stimuli. In both cases, we evaluated the levels of pmTOR, p70S6k, and p4EBP-1 for the mTOR pathway, pNFkβ, and pERK for inflammation and LC 3 and p62 for autophagy. For autophagy, we also used immunofluorescence analysis. Using intestinal organoids derivate from celiac (CD) patients, we analyzed the effect of gliadin after postbiotic pretreatment with LP on inflammation marker NFkβ. Through these experiments, we showed that gliadin peptides are able to induce the increase of the inflammatory response in a more complex model of intestinal epithelial cells. LP postbiotic was able to induce autophagy in Caco-2 cells and prevent gliadin effects. In conclusion, postbiotic pretreatment with LP could be considered for in vivo clinical trials.  相似文献   

17.
MALDI-TOF mass spectroscopy is used in the characterization of synthetic polymers. MALDI allows for determination of: modal, most probable peak (MP), molecular number average (MN), molecular weight average (MW), polydispersity (PD), and polymer spread (PSP). We evaluate a new sample preparation method using Induction Based Fluidics (IBF) to kinetically launch and direct nanoliter volumes to a target without contact. IBF offers signal improvement via field enhanced crystallization. This is the first paper to discuss filed enhanced crystallization in MALDI sample preparation. IBF can increase signal/noise (S/N) and signal intensity for polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(ethylene glycol) (PEG) across a mass range of 2500-92,000 Da showing more accurate PSP. Increases in S/N range up to: 279% for PS, 140% for PMMA, and 660% for PEG. Signal intensities increased up to: 438% for PS, 115% for PMMA, and 166% for PEG. Cross-polarization microscopy indicates dramatic morphology differences between IBF and micropipette. Finally, we speculate as to why IBF nanoliter depositions afford higher S/N values in experiments conducted in different instrumental configurations even without optimization.  相似文献   

18.
Meretrix lusoria (M. lusoria) is an economically important shellfish which is widely distributed in South Eastern Asia that contains bioactive peptides, proteins, and enzymes. In the present study, the extracted meat content of M. lusoria was enzymatic hydrolyzed using four different commercial proteases (neutrase, protamex, alcalase, and flavourzyme). Among the enzymatic hydrolysates, M. lusoria protamex hydrolysate (MLPH) fraction with MW ≤ 1 kDa exhibited the highest free radical scavenging ability. The MLPH fraction was further purified and an amino acid sequence (KDLEL, 617.35 Da) was identified by LC-MS/MS analysis. The purpose of this study was to investigate the anti-obesity and anti-hyperglycemic effects of MLPH containing antioxidant peptides using ob/ob mice. Treatment with MLPH for 6 weeks reduced body and organ weight and ameliorated the effects of hepatic steatosis and epididymal fat, including a constructive effect on hepatic and serum marker parameters. Moreover, hepatic antioxidant enzyme activities were upregulated and impaired glucose tolerance was improved in obese control mice. In addition, MLPH treatment markedly suppressed mRNA expression related to lipogenesis and hyperglycemia through activation of AMPK phosphorylation. These findings suggest that MLPH has anti-obesity and anti-hyperglycemic potential and could be effectively applied as a functional food ingredient or pharmaceutical.  相似文献   

19.
Garlic, Allium sativum, has long been utilized for a number of medicinal purposes around the world, and its medical benefits have been well documented. The health benefits of garlic likely arise from a wide variety of components, possibly working synergistically. Garlic and garlic extracts, especially aged garlic extracts (AGEs), are rich in bioactive compounds, with potent anti-inflammatory, antioxidant and neuroprotective activities. In light of these effects, garlic and its components have been examined in experimental models of Alzheimer’s disease (AD), the most common form of dementia without therapy, and a growing health concern in aging societies. With the aim of offering an updated overview, this paper reviews the chemical composition, metabolism and bioavailability of garlic bioactive compounds. In addition, it provides an overview of signaling mechanisms triggered by garlic derivatives, with a focus on allicin and AGE, to improve learning and memory.  相似文献   

20.
Postbiotics are rich in a variety of bioactive components, which may have beneficial effects in inhibiting hepatic lipid accumulation. In this study, we investigated the preventive effects of postbiotics (POST) prepared from Lactobacillus paracasei on non-alcoholic fatty liver disease (NAFLD). Our results showed that when mice ingested a high-fat diet (HFD) and POST simultaneously, weight gain was slowed, epididymal white fat hypertrophy and insulin resistance were suppressed, serum biochemical indicators related to blood lipid metabolism were improved, and hepatic steatosis and liver inflammation decreased. Bacterial sequencing showed that POST modulated the gut microbiota in HFD mice, increasing the relative abundance of Akkermansia and reducing the relative abundance of Lachnospiraceae NK4A136 group, Ruminiclostridium and Bilophila. Spearman’s correlation analysis revealed significant correlations between lipid metabolism parameters and gut microbes. Functional prediction results showed that the regulation of gut microbiota was associated with the improvement of metabolic status. The metabolomic analysis of the liver revealed that POST-regulated liver metabolic pathways, such as glycerophospholipid and ether lipid metabolism, pantothenate and CoA biosynthesis, some parts of amino acid metabolism, and other metabolic pathways. In addition, POST regulated the gene expression in hepatocytes at the mRNA level, thereby regulating lipid metabolism. These findings suggest that POST plays a protective role against NAFLD and may exert its efficacy by modulating the gut microbiota and liver metabolism, and these findings may be applied to related functional foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号