首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The free vibration of a long thick laminated conical tube is studied in this paper with a beam-type model. Taken as a beam, the tube is divided into elements by cross-sections. Each cross-section is a node. In the beam-type model, the nodal forces are assumed to be uniformly distributed along the middle circle, which is the intersection of the cross-section with the middle surface of the tube. The nodal torsional moment is assumed to be produced by a uniformly distributed tangential force along the middle circle. The nodal bending moments are assumed to be produced by sinusoidally distributed axial forces along the middle circle. Three nodal displacements and three nodal rotations corresponding to these nodal forces and moments, respectively, are determined by the energy principle and the assumed deformation pattern. Thus, in the beam-type model, there are only six degrees of freedom at each node. The stiffness matrix in terms of these nodal degrees of freedom is derived from a thick-shell theory together with a semi-analytical method. Based on the stiffness matrix, the frequencies of free vibration are calculated. The numerical results are checked by experimental measurements with good agreement.  相似文献   

2.
An assumed‐strain finite element technique for non‐linear finite deformation is presented. The weighted‐residual method enforces weakly the balance equation with the natural boundary condition and also the kinematic equation that links the elementwise and the assumed‐deformation gradient. Assumed gradient operators are derived via nodal integration from the kinematic‐weighted residual. A variety of finite element shapes fits the derived framework: four‐node tetrahedra, eight‐, 27‐, and 64‐node hexahedra are presented here. Since the assumed‐deformation gradients are expressed entirely in terms of the nodal displacements, the degrees of freedom are only the primitive variables (displacements at the nodes). The formulation allows for general anisotropic materials and no volumetric/deviatoric split is required. The consistent tangent operator is inexpensive and symmetric. Furthermore, the material update and the tangent moduli computation are carried out exactly as for classical displacement‐based models; the only deviation is the consistent use of the assumed‐deformation gradient in place of the displacement‐derived deformation gradient. Examples illustrate the performance with respect to the ability of the present technique to resist volumetric locking. A constraint count can partially explain the insensitivity of the resulting finite element models to locking in the incompressible limit. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a plane beam element without rotational degrees of freedom that can be used for the analysis of non‐linear problems. The element is based on two main ideas. First, a corotational approach is adopted, which means that the kinematics of the element is decomposed into a rigid body motion part and a deformational part. Next, in the deformational part, the local nodal rotations are extrapolated as a function of the local displacements of the two nodes of the element and the first nodes to the left and right of the element. Six numerical applications are presented in order to assess the performance of the formulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
该文发展了一种适用于光滑壳和非光滑壳的新型协同转动4节点四边形壳单元。在单元中每个节点采用了3个平动自由度和2/3个矢量型转动自由度,每个光滑壳的节点或非光滑壳的非交界节点采用壳中性面法向矢量的2个最小分量作为矢量型转动变量,在非光滑壳中性面交界线上的节点采用3个矢量型转动变量,他们分别是节点定向矢量组中一个定向矢量的较小或最小分量和另一定向矢量的2个最小分量。在非线性增量求解过程中,这些矢量型转动变量可以采用简单的加法将增量累加到原矢量中直接进行更新,且采用了协同转动框架的单元在局部和整体坐标系下得到的切线刚度矩阵都是对称的,结构整体切线刚度矩阵可以采用一维线性存储,可节省大量的计算机存储资源和计算时间。为消除膜闭锁和剪切闭锁的不利影响,采用单点积分方案计算单元内力矢量和切线刚度矩阵,并借鉴Belytschko提出的物理稳定化零能模态控制法来消除可能出现的零能模态。通过对2个光滑壳和2个非光滑壳进行非线性分析,检验了单元的可靠性、计算效率与计算精度。  相似文献   

5.
Finite element methods for dynamic analysis employing elements with drilling degrees of freedom are presented. The formulation is based on a variational principle in which displacements and rotations are interpolated independently. The issue of zero masses corresponding to rotational degrees of freedom is addressed and techniques for defining consistent and lumped rotational mass matrices are presented.  相似文献   

6.
This work presents an alternative finite element shell formulation based on non-conventional nodal parameters. The considered parameters are nodal positions (not displacements) and generalized vector components that comprise both director cossines and shell thickness variation at the same time. Although any objective strain measure could be adopted to develop the proposed formulation, non-linear engineering strain is chosen in order to take advantage of well know linear engineering stress–strain relations and to complement the easy geometrical appeal of positional formulation. The resulting formulation presents six degrees of freedom by each node and considers constant thickness variation. Consequently, the formulation fulfills a three dimensional compatible mapping and requires a relaxed three-dimensional constitutive relation to avoid thickness locking. Curved triangular elements with cubic approximation are adopted following a very simple notation. Several numerical simulations illustrate and confirm the accuracy and applicability of the proposed formulation.  相似文献   

7.
In this work, a new global reanalysis technique for the efficient computation of stresses and error indicators in two‐dimensional elastostatic problems is presented. In the context of the boundary element method, the global reanalysis technique can be viewed as a post‐processing activity that is carried out once an analysis using Lagrangian elements has been performed. To do the reanalysis, the functional representation for the displacements is changed from Lagrangian to Hermite, introducing the nodal values of the tangential derivatives of those quantities as additional degrees of freedom. Next, assuming that the nodal values of the displacements and the tractions remain practically unchanged from the ones obtained in the analysis using Lagrangian elements, the tangent derivative boundary integral equations are collocated at each functional node in order to determine the additional degrees of freedom that were introduced. Under this scheme, a second system of equations is generated and, once it is solved, the nodal values of the tangential derivatives of the displacements are obtained. This approach gives more accurate results for the stresses at the nodes since it avoids the need to differentiate the shape functions in order to obtain the normal strain in the tangential direction. When compared with the use of Hermite elements, the global reanalysis technique has the attraction that the user does not have to give as input data the additional information required by this type of elements. Another important feature of the proposed approach is that an efficient error indicator for the values of the stresses can also be obtained comparing the values for the stresses obtained through the use of Lagrangian elements and the global reanalysis technique. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The rotation degree of freedom in discontinuous deformation analysis (DDA) may cause false volume expansion when a block undergoes a large rotation. We propose a block displacement function to prevent this defect. Specifically, the degrees of freedom in a block are redefined by incremental displacements at its vertices, and displacement is formulated based on the mean value coordinates. In addition, the finite element method with updated Lagrangian formulation is employed to derive the equilibrium equations, while the contact analysis and implicit time integration for dynamics is maintained from the original DDA. After each time step, the block configuration is updated by adding the new degrees of freedom to the previous coordinates of the block vertices. Results from numerical examples confirm the effectiveness of the proposed approach to prevent false volume expansion, ensure correctness of contact analysis, and provide realistic stress results when simulating large rotations.  相似文献   

9.
In the finite segment method, the dynamics of a deformable body is described using a set of rigid bodies that are connected by elastic force elements. This approach can be used, as demonstrated in this investigation, in the simulation of some rail movements. In order to ensure that the rail geometry is not distorted as the result of the finite segment displacements, a new track model that consistently integrates the absolute nodal coordinate formulation (ANCF) geometry and the finite segment method is developed. ANCF finite elements define the track geometry in the reference configuration as well as the change in the geometry due to the movement of the finite segments of the track. Using ANCF geometry and the finite segment kinematics, the location of the wheel/rail contact point is predicted online and used to update the creepage expressions due to the finite segment displacements and rotations. The location of the wheel/rail contact point and the updated creepage expressions are used to evaluate the creep forces. A three-dimensional elastic contact formulation (ECF-A) which allows for wheel/rail separation is used in this investigation. The rail displacement due to the applied loads is modeled by a set of rigid finite segments that are connected by a set of spring-damper elements. Each rail finite segment is assumed to have six rigid body degrees of freedom. The equations of motion of the finite segments are integrated with the railroad vehicle system equations of motion in a sparse matrix formulation. The resulting dynamic equations are solved using a predictor–corrector numerical integration method that has a variable order and variable step size. The finite segments may be used to model specific phenomena that occur in railroad vehicle applications, including rail rotations and gauge widening. The procedure used in this investigation to implement the finite segment method in a general purpose multibody system (MBS) computer program is described. Two simple models are presented in order to demonstrate the implementation of the finite segment method in MBS algorithms. The limitations of using the finite segments approach for modeling the track structure and rail flexibility are also discussed.  相似文献   

10.
A formulation for 36‐DOF assumed strain triangular solid shell element is developed for efficient analysis of plates and shells undergoing finite rotations. Higher order deformation modes described by the bubble function displacements are added to the assumed displacement field. The assumed strain field is carefully selected to alleviate locking effect. The resulting element shows little effect of membrane locking as well as shear locking, hence, it allows modelling of curved shell structures with curved elements. The kinematics of the present formulation is purely vectorial with only three translational degrees of freedom per node. Accordingly, the present element is free of small angle assumptions, and thus it allows large load increments in the geometrically non‐linear analysis. Various numerical examples demonstrate the validity and effectiveness of the present formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
This paper improves the 16 degrees‐of‐freedom quadrilateral shell element based on pointwise Kirchhoff–Love constraints and introduces a consistent large strain formulation for this element. The model is based on classical shell kinematics combined with continuum constitutive laws. The resulting element is valid for large rotations and displacements. The degrees‐of‐freedom are the displacements at the corner nodes and one rotation at each mid‐side node. The formulation is free of enhancements, it is almost fully integrated and is found to be immune to locking or unstable modes. The patch test is satisfied. In addition, the formulation is simple and amenable to efficient incorporation in large‐scale codes as no internal degrees‐of‐freedom are employed, and the overall calculations are very efficient. Results are presented for linear and non‐linear problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
《Composite Structures》1988,9(3):215-246
A higher-order theory which satisfies zero transverse shear stress conditions on the bounding planes of a generally laminated fibre-reinforced composite plate subjected to transverse loads is developed. The displacement model accounts for non-linear distribution of inplane displacement components through the plate thickness and the theory requires no shear correction coefficients. A C∘ continuous displacement finite element formulation is presented and the coupled membrane-flexure behaviour of laminated plates is investigated. The nodal unknowns are the three displacements, two rotations and two higher-order functions as the generalized degrees of freedom. The simple isoparametric formulation developed here is capable of evaluating transverse shears and transverse normal stress accurately by using the equilibrium equations. The accuracy of the nine-noded Lagrangian quadrilateral element is then established by comparing the present results with the closed-form, three-dimensional elasticity and other finite element available solutions.  相似文献   

13.
A finite element implementation is reported of the Fleck–Hutchinson phenomenological strain gradient theory. This theory fits within the Toupin–Mindlin framework and deals with first‐order strain gradients and the associated work‐conjugate higher‐order stresses. In conventional displacement‐based approaches, the interpolation of displacement requires C1‐continuity in order to ensure convergence of the finite element procedure for higher‐order theories. Mixed‐type finite elements are developed herein for the Fleck–Hutchinson theory; these elements use standard C0‐continuous shape functions and can achieve the same convergence as C1 elements. These C0 elements use displacements and displacement gradients as nodal degrees of freedom. Kinematic constraints between displacement gradients are enforced via the Lagrange multiplier method. The elements developed all pass a patch test. The resulting finite element scheme is used to solve some representative linear elastic boundary value problems and the comparative accuracy of various types of element is evaluated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Based on the incremental non-linear theory of solid bodies and the Hellinger-Reissncr principle, a mixed updated Lagrangian formulation of the large displacement motion of solid bodies is derived, and an associated mixed finite element model is developed. The model contains the displacements and stresses as the nodal degrees of freedom. The model is used for the large deformation elasto-plastic analysis of plane problems. In solving non-linear problems, the Newton-Raphson method with arc-length control is adopted to trace the post-buckling response. The computational steps to calculate the elasto-plastic stress increments at Gauss points in the elasto-plastic analysis by the present mixed model are described in detail. Numerical results are presented and compared with those of the displacement model and existing solutions to show the accuracy of the present mixed model in the large deformation elasto-plastic analysis of plane problems.  相似文献   

15.
An explicit expression for the stiffness matrix is worked out for a triangular plate bending element considering the effect of transverse shear deformation. The element has twelve nodes on the sides and four nodes internal to it. The formulation is displacement type and the use of area co-ordinates makes it possible to obtain the shape functions explicitly. Separate polynomials are assumed for transverse displacement and rotations. To obtain the element stiffness matrix no matrix inversion or numerical integration need be carried out and only a few matrix multiplications of low order are necessary. The element, which is initially of thirty five degrees of freedom, can be reduced to a thirty degrees of freedom one by condensation of the internal nodes. An interesting feature of the element developed is that the values of nodal moments computed at a node point, considering different elements surrounding the node, do not vary significantly. Thus the nodal moments can be obtained directly at node points. Also, the element does not give rise to any inconvenience like locking, even for very thin plates. The straightforward approach in formation of the element stiffness will cut down the storage space considerably and will also call for less CPU time, thus making the use of the element well suited to low capacity computers. A number of plate bending problems have been worked out using the present element for different thickness to side ratios and a comparison has been made with the available results. Good accuracy has been observed in all cases, even for a small number of elements.  相似文献   

16.
A quasi-conforming triangular laminated shell element based on a refined first-order shear deformation theory is presented. The Hu-Washizu variational principle, involving strain and displacement fields as variables, with stresses being considered as Lagrange multipliers, is used to develop the laminate composite shell element. Both strains and displacements are discretized in the element, while displacements alone are discretized at the boundary. The inter-element C 1 continuity is satisfied a posteriori in a weak form. Due to the importance of rotations and shear deformation in the geometrically non-linear analyses of shells, 7 degrees of freedom per node are chosen, viz. three displacements, two first-derivatives in the in-plane directions of the out-of-plane displacement, and two transverse shear strains at each node. To consider the effect of transverse shear deformation on the global behavior of the laminated composite shell, the Reissner-Mindlin first-order theory, with shear correction factors of Chow and Whitney, is adopted. The transverse shear stresses are obtained through the integration of the 3-D equilibrium equations; and the warping induced by transverse shear is considered in the calculation of the in-plane stresses to improve their accuracy. Numerical examples show that the element has good convergence properties and leads to highly accurate stresses.  相似文献   

17.
In most plate elements using the Reissner-Mindlin assumptions, the interpolations used for the lateral displacements (w) and the rotation (θ) involve the independent representation of each variable by its nodal values, usually with identical interpolations. To ensure a higher order of expansion for displacement w its representation is linked in the present paper with both sets of nodal variables. Conditions necessary for the use of such expansions are established here and the paper shows the development of a linear quadrilateral element (Q4BL) whose performance and robustness are good (although it possesses one singularity if only three degrees of freedom are prescribed). In Part II we apply the identical formulation to develop a triangular element (T3BL) which performs equally well and is fully robust.  相似文献   

18.
The present paper considers a finite rotation formulation for curved shell elements with rotations about the element sides as nodal degrees of freedom. Attention is mainly on the derivation of a consistent finite rotation formulation. Significant simplifications of the governing equations are presented. These simplifications lead to more efficient finite element implementations. Numerical examples demonstrate the differences between the present consistent and previous approximate formulations.  相似文献   

19.
Formulation and numerical evaluation of a shear-flexible triangular laminated composite plate finite element is presented in this paper. The element has three nodes at its vertices, and displacements and rotations along with their first derivatives have been chosen as nodal degrees-of-freedom. Computation of element matrices is highly simplified by employing a shape function subroutine, and an optimal numerical integration scheme has been used to improve the performance. The element has satisfactory rate of convergence and acceptable accuracy with mesh refinement for thick as well as thin plates of both homogeneous isotropic and laminated anisotropic materials. The numerical studies also suggest that reliable prediction of the behaviour of laminated composite plates necessitates the use of higher order shear-flexible finite element models, and the proposed finite element appears to have some advantages over available elements.  相似文献   

20.
A new quadrilateral Reissner–Mindlin plate element with 12 element degrees of freedom is presented. For linear isotropic elasticity a Hellinger–Reissner functional with independent displacements, rotations and stress resultants is used. Within the mixed formulation the stress resultants are interpolated using five parameters for the bending moments and four parameters for the shear forces. The hybrid element stiffness matrix resulting from the stationary condition can be integrated analytically. This leads to a part obtained by one‐point integration and a stabilization matrix. The element possesses a correct rank, does not show shear locking and is applicable for the evaluation of displacements and stress resultants within the whole range of thin and thick plates. The bending patch test is fulfilled and the computed numerical examples show that the convergence behaviour is better than comparable quadrilateral assumed strain elements. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号