首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid glutamatergic synaptic transmission is mediated by ionotropic glutamate receptors and depends on their precise localization at postsynaptic membranes opposing the presynaptic neurotransmitter release sites. Postsynaptic localization of N-methyl-D-aspartate-type glutamate receptors may be mediated by the synapse-associated proteins (SAPs) SAP90, SAP102, and chapsyn-110. SAPs contain three PDZ domains that can interact with the C termini of proteins such as N-methyl-D-aspartate receptor subunits that carry a serine or threonine at the -2 position and a valine, isoleucine, or leucine at the very C terminus (position 0). We now show that SAP97, a SAP whose function at the synapse has been unclear, is associated with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors. AMPA receptors are probably tetramers and are formed by two or more of the four AMPA receptor subunits GluR1-4. GluR1 possesses a C-terminal consensus sequence for interactions with PDZ domains of SAPs. SAP97 was present in AMPA receptor complexes immunoprecipitated from detergent extracts of rat brain. After treatment of rat brain membrane fractions with the cross-linker dithiobis(succinimidylpropionate) and solubilization with sodium dodecylsulfate, SAP97 was associated with GluR1 but not GluR2 or GluR3. In vitro experiments with recombinant proteins indicate that SAP97 specifically associates with the C terminus of GluR1 but not other AMPA receptor subunits. Our findings suggest that SAP97 may be involved in localizing AMPA receptors at postsynaptic sites through its interaction with the GluR1 subunit.  相似文献   

2.
Redox agents elicit a wide variety of effects on the ligand affinity and channel properties of ionotropic glutamate receptors and have been proposed as potential therapeutic agents for neuropathological processes. One such effect is the dithiothreitol (DTT)-induced increase in agonist affinity of certain ionotropic glutamate receptors (GluRs), presumably due to reduction of a disulfide bridge formed between cysteine residues conserved among all GluRs. Using biochemical techniques, this disulfide is shown to exist in the ligand-binding domain of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit GluRD, although GluRD homomeric receptors are not modulated by DTT. The disulfide is inaccessible to DTT, explaining the insensitivity of the intact receptor. Single mutants C260S and C315S show a 2-3-fold higher ligand affinity than wild-type, as observed for several intact GluRs, indicating that the affinity switch is completely contained within the ligand-binding domain. Also, mutants lacking the native disulfide show non-native oligomerization and dramatically reduced specific activity. These facts suggest that the disulfide bridge is required for the stability of the ligand-binding domain, explaining its conservation. A third cysteine residue in the ligand-binding domain exists as a free thiol, partially sequestered in a hydrophobic environment. These results provide a framework for interpreting a variety of GluR redox modulatory phenomena.  相似文献   

3.
The effects of glutamate receptor antagonists on urinary bladder and external urethral sphincter- (EUS) electromyogram (EMG) activity were evaluated in unanesthetized decerebrate rats. In normal rats, LY215490, an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, in small i.v. doses (1-3 mg/kg) decreased bladder contraction amplitude (BC-Amp) by 29% and EUS-EMG by 41%; whereas a large dose (10 mg/kg) completely abolished bladder and EUS-EMG activity. LY215490 injected intrathecally in small doses (0.01-0.1 microg) decreased BC-Amp by 20% and EUS-EMG by 62%; whereas large doses (1-10 microg) completely abolished bladder and EUS-EMG activity. LY215490 (0.1 microg i.t.) increased bladder capacity by 28% and decreased voiding efficiency by 44%. Combined i.t. administration of small doses of LY215490 (0.1 microg) and MK-801 (1 microg), an N-methyl-D-aspartate (NMDA) receptor antagonist, which individually had little effect on BC-Amp, markedly suppressed bladder activity. In chronic spinal rats, LY215490 (10 mg/kg i.v.) abolished EUS-EMG activity and decreased BC-Amp by 41%. Intrathecal injections of LY215490 were also less effective in chronic spinal rats; a 10-microg dose producing only a partial block (53%) of BC-Amp, but complete block of EUS-EMG. In chronic spinal rats, MK-801 (1 mg/kg i.v.) abolished EUS-EMG activity and decreased BC-Amp by 36%. Pretreatment with MK-801 (1 mg/kg i.v.) did not enhance the effect of LY215490 on bladder activity in chronic spinal rats. These data suggest that AMPA glutamate receptors have a major role in the excitatory pathways controlling bladder and EUS activity in spinal cord intact rats. However, in chronic spinal rats, AMPA and NMDA receptors are essential for EUS reflexes, but are responsible for only a part of reflex bladder activity.  相似文献   

4.
The synthesis and pharmacological properties of several racemic 6,7,8,9-tetrahydro-3-hydroxy-1H-1-benzazepine-2,5-diones (THHBADs) are described. Synthesis was accomplished via a Schmidt reaction with 5,6,7,8-tetrahydro-2-methoxynaphthalene-1,4-diones (THMNDs) followed by demethylation. THMNDs were prepared via a Diels-Alder reaction with 2-methoxybenzoquinone (5) or 2-bromo-5-methoxybenzoquinone (14) and substituted 1,3-butadienes. The pharmacology of THHBADs was characterized by electrical recordings in Xenopus oocytes expressing rat brain NMDA and AMPA receptors. THHBADs are antagonists of NMDA and AMPA receptors with functional potency being dependent upon the substitution pattern on the tetrahydrobenzene moiety. The 7,8-dichloro-6-methyl (18a) and 7,8-dichloro-6-ethyl (18b) analogs are the most potent THHBADs prepared and have apparent antagonist dissociation constants (Kb values) of 0.0041 and 0.0028 microM, respectively, for NMDA receptors and 0.51 and 0.72 microM, respectively, for AMPA receptors.  相似文献   

5.
The role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in the initiation and propagation of limbic motor seizures in rats was examined by the intracerebral and systemic administration of 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (f) quinoxaline (NBQX), a selective antagonist of the AMPA subtype of glutamate receptor. Limbic motor seizures were evoked focally by the application of the gamma-aminobutyric acid receptor antagonist, bicuculline, into area tempestas, an epileptogenic site in the deep anterior piriform cortex. Before eliciting seizures, NBQX was applied focally into either 1) area tempestas or 2) perirhinal or posterior piriform cortex ipsilateral to the area tempestas from which seizures were evoked. In addition, pretreatment with i.p. NBQX was evaluated for anticonvulsant actions against area tempestas-evoked clonic or systemically evoked tonic seizures. In all conditions, a dose-dependent decrease in the severity of seizures was obtained with NBQX. With focal intracerebral administration, a dose of 500 pmol of NBQX consistently protected against limbic motor seizures, with partial protection achieved with 100 pmol. After i.p. administration, 2.5 and 5.0 mg/kg significantly protected the rats from both limbic motor seizures and tonic extensor seizures. No overt disturbance of spontaneous behavior was associated with the anticonvulsant doses of NBQX. Moreover, both forebrain substrates of limbic motor seizures and hindbrain substrates of tonic extensor seizures were highly susceptible to disruption by NBQX. The results indicate that AMPA subtype of glutamate receptors are crucial mediators of seizure propagation via perirhinal and piriform cortics.  相似文献   

6.
The in-vitro pharmacological properties of (2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydro-1-quinoxal inyl)-acetic acid monohydrate, YM872, a novel and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor antagonist were investigated. YM872 is highly water soluble (83 mg mL(-1) in Britton-Robinson buffer) compared with 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX), 6-(1H-imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). YM872 potently inhibits [3H]AMPA binding with a Ki (apparent equilibrium dissociation constant) value of 0.096 +/- 0.0024 microM. However, YM872 had very low affinity for other ionotropic glutamate receptors, as measured by competition with [3H]kainate (high-affinity kainate binding site, concentration resulting in half the maximum inhibition (IC50) = 4.6 +/- 0.14 microM), [3H]glutamate (N-methyl-D-aspartate (NMDA) receptor glutamate binding site, IC50 > 100 microM) and [3H]glycine (NMDA receptor glycine-binding site, IC50 > 100 microM). YM872 competitively antagonized kainate-induced currents in Xenopus laevis oocytes which express rat AMPA receptors, with a pA2 value of 6.97 +/- 0.01. In rat hippocampal primary cultures, YM872 blocked a 20-microM AMPA-induced increase of intracellular Ca2+ concentration with an IC50 value of 0.82 +/- 0.031 microM, and blocked 300-microM kainate-induced neurotoxicity with an IC50 value of 1.02 microM. These results show that YM872 is a potent and highly water-soluble AMPA antagonist with great potential for treatment of neurodegenerative disorders such as stroke.  相似文献   

7.
Antagonists of the NMDA type of excitatory amino acid (EAA) receptor attenuate or reverse the development of tolerance to the analgesic effects of the mu opioid agonist morphine, the delta-1 opioid agonist DPDPE but not the kappa-1 agonist U50,488H or the kappa-3 agonist naloxone benzoylhydrazone. The role of the AMPA subtype of EAA receptor in analgesic tolerance was examined using LY293558, a selective competitive antagonist that is active after systemic administration. Administration of morphine, DPDPE, or U50,488H three times daily for 3 days according to an escalating dosing schedule resulted in analgesic tolerance as indicated by an increase in analgesic ED50 values using the tail-flick test in mice. Analgesic tolerance was attenuated when mice received a continuous subcutaneous infusion of LY293558 at doses of 30, 45 or 60 mg/kg/24 hr via an osmotic pump concurrent with the morphine treatment. Continuous subcutaneous infusion of LY293558 (45 mg/kg/24 hr) also reversed established morphine tolerance. In contrast, continuous subcutaneous infusion of the highest dose of LY293558 (60 mg/kg/24 hr) was ineffective in preventing the development of analgesic tolerance to DPDPE or U50,488H. Continuous subcutaneous infusion of LY293558 (60 mg/kg/24 hr) for 3 days protected mice from generalized convulsions produced by the selective AMPA agonist ATPA, indicating that the dosage of LY293558 that attenuated morphine tolerance was effective as an antagonist at AMPA receptors. These results demonstrate that AMPA receptors may play a role in the development and maintenance of morphine, but not DPDPE or U50,488H, analgesic tolerance.  相似文献   

8.
Antagonists of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptors may have therapeutic potential as psychotropic agents. A series of mononitro- and dinitro-2- and 3-hydroxyphenylalanines was prepared, and their activity compared with willardiine, 5-nitrowillardiine, AMPA, and 2,4,5-trihydroxyphenylalanine (6-hydroxydopa) as inhibitors of specific [3H]AMPA and [3H]kainate binding in rat brain homogenates. The most active compounds were highly acidic (pKa 3-4), namely, 2-hydroxy-3,5-dinitro-DL-phenylalanine (13; [3H]AMPA IC50 approximately equal to 25 microM) and 3-hydroxy-2,4-dinitro-DL-phenylalanine (19; [3H]AMPA IC50 approximately equal to 5 microM). Two other dinitro-3-hydroxyphenylalanines, and 3,5-dinitro-DL-tyrosine, were considerably less active. Various mononitrohydroxyphenylalanines, which are less acidic, were also less active or inactive, and 2- and 3-hydroxyphenylalanine (o- and m-tyrosine) were inactive. Compounds 13 and 19, DL-willardiine (pKa 9.3, [3H]AMPA IC50 = 2 microM), and 5-nitro-DL-willardiine (pKa 6.4, [3H]AMPA IC50 = 0.2 microM) displayed AMPA > kainate selectivity in binding studies. Compound 19 was an AMPA-like agonist, but 13 was an antagonist in an AMPA-evoked norepinephrine release assay in rat hippocampal nerve endings. Also, compound 13 injected into the rat ventral pallidum antagonized the locomotor activity elicited by systemic amphetamine.  相似文献   

9.
L-glutamate (3-1,000 microM) and (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD; 10-1,000 microM), a selective agonist for the metabotropic glutamate receptor, stimulated the formation of inositol 1,4,5-trisphosphate in a concentration-dependent manner. L-Glutamate was half as efficacious as 1S,3R-ACPD. N-methyl-D-aspartate (NMDA; 1 nM to 1 mM) did not significantly influence the response to a maximally effective concentration of 1S,3R-ACPD (100 microM). On the other hand, coapplication of (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA; 1-300 nM) produced a concentration- and time-dependent inhibition of the 1S,3R-ACPD effect, with a maximal inhibition (97%) at 100 nM. Ten micromolar 6-cyano-7-nitroquinoxaline-2,3-dione, an antagonist of the AMPA receptor, blocked the inhibitory effect of AMPA. Reduced extracellular calcium concentration, as well as 10 microM nimodipine, an L-type calcium channel antagonist, inhibited the AMPA influence on the 1S,3R-ACPD response. W-7, a calcium/calmodulin antagonist, prevented the inhibition by AMPA, whereas H-7, an inhibitor of protein kinase C, had no effect. These data suggest that activation of AMPA receptors has an inhibitory influence on inositol 1,4,5-trisphosphate formation mediated by stimulation of the metabotropic glutamate receptor. The mechanism of action involves calcium influx through L-type type calcium channels and possible activation of calcium/calmodulin-dependent enzymes.  相似文献   

10.
11.
We compared the toxin sensitivity, Ca2+ flux response and rectification properties of recombinant alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptors obtained by transfecting human embryonic kidney (HEK) 293 cells with different ratios of GluR1 and GluR2 cDNAs (10:1 to 1:10). Simultaneous measurements of kainate-activated Ca2+ fluxes and inward currents, using fura-2 microfluorimetry under voltage clamp conditions, suggested the existence of GluR2 containing channels which are permeable to Ca2+ and insensitive to Joro spider toxin (JSTx). Imaging experiments showed that JSTx inhibition of the Ca2+ response induced by kainate was reduced by increasing the relative amount of GluR2. However, even at GluR1/GluR2(R) ratios of 1:1 and 1:4, cells were still able to flux Ca2+ when stimulated by kainate. GluR2 similarly inhibited the ability of JSTx to reduce kainate-evoked inward currents in whole cell patch-clamp experiments. Variations in the rectification properties of the AMPA currents, induced by changes in the cDNA ratio, were not always correlated with the changes in toxin sensitivity and [Ca2+]i response. Thus, cells with almost linear I-V relationships were partially blocked by JSTx and still Ca2+ permeable. Our results indicate a dissociation between the toxin sensitivity and Ca2+ flux through GluR2 containing AMPA receptors and suggest that receptors with diverse Ca2+ permeabilities are generated by the expression of variable amounts of GluR2.  相似文献   

12.
Excitatory amino acid (EAA) receptors and EAA-mediated stimulation of polyphosphoinositide (poly-PI) turnover were studied in cultured neurons at different days in vitro (DIV). Six main observations have emerged from these studies: (a) Neurons increased their sensitivity to EAAs as a function of time in culture, indicated by increasing EAA-mediated poly-PI turnover. (b) Extracellular Ca2+ concentration played an important role in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-stimulated poly-PI turnover in cells at 4 DIV, whereas poly-PI turnover mediated by L-glutamate and trans-1-amino-cyclopentane-1,3-dicarboxylic acid was not Ca(2+)-dependent. (c) A marked stimulation of poly-PI turnover by AMPA was seen in the cultured neurons at 4 DIV, but not at 17 DIV, suggesting that a distinct EAA receptor sensitive to AMPA is transiently expressed. (d) The Ca2+ ionophore A23187 increased poly-PI turnover in cultured neurons, suggesting that Ca2+ entry is involved in stimulating poly-PI turnover. (e) Stimulation of poly-PI turnover by carbachol was greater in neurons at 17 DIV as compared with 4 DIV, and appeared to be Ca(2+)-dependent across DIV. (f) 6-Cyano-7-nitroquinoxaline-2,3-dione, an antagonist for non-N-methyl-D-aspartate ionotropic EAA receptors, inhibited 100% and 35% of AMPA- and quisqualate-induced poly-PI turnover, respectively, suggesting an involvement of ionotropic AMPA/quisqualate receptors in stimulating poly-PI turnover.  相似文献   

13.
14.
This study evaluated the hypotheses that in vivo lead (Pb) exposure would alter alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor binding and, based on known glutamate-dopamine interactions and Pb-induced changes in dopamine (DA) systems, that AMPA binding might be differentially influenced by DA agonist treatment under conditions of Pb exposure. Alterations in high-affinity ([3H]AMPA) versus total AMPA [6-[3H]cyano-7-nitroquinoxaline-2,3-dione ([3H]CNQX)] receptor binding were determined in medial frontal cortex, dorsal striatum, and nucleus accumbens of rats exposed to 0, 50, or 150 ppm of Pb acetate for 2 weeks or 8 months. Additional 8-month groups received chronic intermittent treatment with saline, the D1 agonist SKF82958, or the general DA agonist apomorphine. Two-week exposures increased AMPA receptor densities, whereas robust decreases occurred after 8 months of Pb; at the latter time point changes were more pronounced for high-affinity than total AMPA receptor binding, with high-affinity effects expressed preferentially in dorsal striatum and nucleus accumbens. DA agonist treatments almost fully reversed Pb-related declines in [3H]AMPA binding but either had no effect (apomorphine) or even further potentiated (SKF82958) the decreases in [3H]CNQX binding. One possible basis for the long-term (8-month) decrease in AMPA binding is a postsynaptic glutamatergic stimulation of non-NMDA receptors.  相似文献   

15.
Intracerebroventricular administration of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) or kainate caused a rise of the temperature of the brain and the rectum in urethane-anesthetized rats. An AMPA-kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), significantly suppressed the AMPA- and kainate-induced rises of brain and rectal temperatures. An N-methyl-d-aspartate receptor antagonist, MK-801, also suppressed the rises of the brain and rectal temperatures induced by AMPA or kainate, but the profiles of the suppressive effects of MK-801 were different between rats treated with AMPA and kainate. An antipyretic agent, indomethacin, completely suppressed the AMPA-induced rises of brain and rectal temperatures. Although indomethacin completely suppressed the kainate-induced rise of the rectal temperature as well, the brain temperature was still raised. These findings suggest that distinct mechanisms may be involved in the temperature rise of the brain and the rectum mediated through AMPA and kainate receptor stimulation.  相似文献   

16.
The SAR of a series of 2-(7-chromanyl)benzoic acids has been investigated with the aim of identifying potent and selective LTB4 receptor antagonists that maintain potency in complex biological fluids. We found optimal activity in derivatives with electron-withdrawing groups in the benzoic acid ring and with an unsubstituted C-3 benzyl group on the chromanol nucleus. While compounds containing a 3-(4-phenyl)benzyl chromanol substituent were potent LTB4 receptor antagonists, the increased lipophilicity imparted by the additional phenyl substituent led to decreased potency in the presence of plasma proteins. From among the potent compounds identified, CP-195543, the 5'-trifluoromethyl 3-benzyl chromanol, was selected for development.  相似文献   

17.
All three subtypes of beta-adrenoceptors are coupled to stimulation of adenylyl cyclase activity via the stimulatory guanine-nucleotide-binding protein. Nevertheless, the beta3 adrenoceptor (beta3-AR) differs significantly from the other subtypes in terms of pharmacology. Most strikingly, it recognizes as agonists several compounds acting as potent beta1-AR and beta2-AR antagonists. Furthermore, the human beta3-AR is quite different from the animal beta3-AR. Molecular modelling studies followed by site-directed mutagenesis was used here to identify some of the amino acid residues which may be implicated in ligand binding and signal transduction of the beta3-AR. Three contiguous residues, valine-leucine-alanine, which are present in the first transmembrane domain at positions 48-50 of the human receptor but are absent in all known rodent sequences, were thought to be important for species specificity. When these three residues were deleted from the human receptor, no 'rodent-like' pharmacological profile was obtained in terms of either binding or adenylyl cyclase activation. Glycine at position 53, also in the first transmembrane domain in the human beta3-AR, has been suggested to participate in beta2-/beta3-AR subtype selectivity. Replacement of this glycine residue by phenylalanine, which is the residue present at the homologous position in the human beta2-AR, left the beta3-AR pharmacological profile unaltered in terms of specificity and selectivity. Aspartate residue 117, in the third transmembrane domain, has been found to be essential for ligand binding and consequently adenylyl cyclase activation in several bioamine receptors. When this residue was replaced by a leucine residue in the beta3-AR, ligand binding and signal transduction were suppressed. Finally, replacement of asparagine at position 312 in the sixth transmembrane domain by an alanine residue, led to alterations in the signal-transduction pathway.  相似文献   

18.
Histone RNA 3' processing in vitro produces one or more 5' cleavage products corresponding to the mature histone mRNA 3' end, and a group of 3' cleavage products whose 5' ends are mostly located several nucleotides downstream of the mRNA 3' end. The formation of these 3' products is coupled to the formation of 5' products and dependent on the U7 snRNP and a heat-labile processing factor. These short 3' products therefore are a true and general feature of the processing reaction. Identical 3' products are also formed from a model RNA containing all spacer nucleotides downstream of the mature mRNA 3' end, but no sequences from the mature mRNA. Again, this reaction is dependent on both the U7 snRNP and a heat-labile factor. Unlike the processing with a full-length histone pre-mRNA, this reaction produces only 3' but no 5' fragments. In addition, product formation is inhibited by addition of cap structures at the model RNA 5' end, indicating that product formation occurs by 5'-3' exonucleolytic degradation. This degradation of a model 3' product by a 5'-3' exonuclease suggests a mechanism for the release of the U7 snRNP after processing by shortening the cut-off histone spacer sequences base paired to U7 RNA.  相似文献   

19.
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a by-product of wood pulp manufacture and a contaminant of chlorinated drinking water, was investigated for potential teratogenicity using the micromass in vitro test system. Twelve-day rat embryo midbrain (central nervous system, CNS) and limb bud (LB) cells were exposed to MX at concentrations of 1, 2, 5, or 10 microg/ml in the culture medium with or without S9 mix. Under the experimental conditions, the amount of MX rapidly declined in the culture medium with a half-life of 56 min. Nevertheless, differentiation of CNS and LB cells was significantly inhibited at concentrations of 2 microg/ml or more, when the cells were exposed to MX in the absence of S9 mix. The estimated IC50 was approximately 3 microg/ml for both CNS and LB cell cultures. On the other hand, exposure of CNS and LB cells to MX along with S9 mix did not reduce the number of differentiated foci at any concentrations tested. These results suggest that MX may be a potential direct-acting in vitro teratogen.  相似文献   

20.
Oligodendrocytes and their progenitors (O-2A) express functional kainate- and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-preferring glutamate receptors. The physiological consequences of activation of these receptors were studied in purified rat cortical O-2A progenitors and in the primary oligodendrocyte cell line CG-4. Changes in the mRNA levels of a set of immediate early genes were studied and were correlated to intracellular Ca2+ concentration, as measured by fura-2 Ca2+ imaging. Both in CG-4 and in cortical O-2A progenitors, basal mRNA levels of NGFI-A were much higher than c-fos, c-jun, or jun-b. Glutamate, kainate, and AMPA greatly increased NGFI-A mRNA and protein by activation of membrane receptors in a Ca(2+)-dependent fashion. Agonists at non-N-methyl-D-aspartate receptors promoted transmembrane Ca2+ influx through voltage-dependent channels as well as kainate and/or AMPA channels. The influx of Ca2+ ions occurring through glutamate-gated channels was sufficient by itself to increase the expression of NGFI-A mRNA. AMPA receptors were found to be directly involved in intracellular Ca2+ and NGFI-A mRNA regulation, because the effects of kainate were greatly enhanced by cyclothiazide, an allosteric modulator that selectively suppresses desensitization of AMPA but not kainate receptors. Our results indicate that glutamate acting at AMPA receptors regulates immediate early gene expression in cells of the oligodendrocyte lineage by increasing intracellular calcium. Consequently, modulation of these receptor channels may have immediate effects at the genomic level and regulate oligodendrocyte development at critical stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号