首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
In this paper, neural networks are used to approximately solve the finite-horizon constrained input H-infinity state feedback control problem. The method is based on solving a related Hamilton-Jacobi-Isaacs equation of the corresponding finite-horizon zero-sum game. The game value function is approximated by a neural network with time- varying weights. It is shown that the neural network approximation converges uniformly to the game-value function and the resulting almost optimal constrained feedback controller provides closed-loop stability and bounded L2 gain. The result is an almost optimal H-infinity feedback controller with time-varying coefficients that is solved a priori off-line. The effectiveness of the method is shown on the Rotational/Translational Actuator benchmark nonlinear control problem.  相似文献   

2.
1 Introduction In recent years, the switched control systems have been attracting considerable attention in the control commu- nity [1~7]. Basically, a switched system belongs to a spe- cial class of hybrid systems, which consist of a family of continuous-time or discrete-time subsystems and a switch- ing law that specifies the switching between them. Such control systems appear in many applications, such as com- municatin networks, switching power converters and many other fields. On the oth…  相似文献   

3.
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.  相似文献   

4.
In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) fuzzy model was proposed to control HVAC systems. The T-S fuzzy model of stabilized controlled process was obtained using the least squares method, then on the basis of global linear predictive model from T-S fuzzy model, the process was controlled by the predictive functional controller. Especially the feedback regulation part was developed to compensate uncertainties of fuzzy predictive model. Finally simulation test results in HVAC systems control applications showed that the proposed fuzzy model predictive functional control improves tracking effect and robustness. Compared with the conventional PID controller, this control strategy has the advantages of less overshoot and shorter setting time, etc.  相似文献   

5.
In this paper, a linear programming method is proposed to solve model predictive control for a class of hybrid systems. Firstly, using the (max, +) algebra, a typical subclass of hybrid systems called max-plus-linear (MPL) systems is obtained. And then, model predictive control (MPC) framework is extended to MPL systems. In general, the nonlinear optimization approach or extended linear complementarity problem (ELCP) were applied to solve the MPL-MPC optimization problem. A new optimization method based on canonical forms for max-min-plus-scaling (MMPS) functions (using the operations maximization, minimization, addition and scalar multiplication) with linear constraints on the inputs is presented. The proposed approach consists in solving several linear programming problems and is more efficient than nonlinear optimization. The validity of the algorithm is illustrated by an example.  相似文献   

6.
7.
In this paper we study the solution to optimal control problems for constrained discrete-time linear hybrid systems based on quadratic or linear performance criteria. The aim of the paper is twofold. First, we give basic theoretical results on the structure of the optimal state-feedback solution and of the value function. Second, we describe how the state-feedback optimal control law can be constructed by combining multiparametric programming and dynamic programming.  相似文献   

8.
Linear programming and model predictive control   总被引:1,自引:0,他引:1  
The practicality of model predictive control (MPC) is partially limited by the ability to solve optimization problems in real time. This requirement limits the viability of MPC as a control strategy for large scale processes. One strategy for improving the computational performance is to formulate MPC using a linear program. While the linear programming formulation seems appealing from a numerical standpoint, the controller does not necessarily yield good closed-loop performance. In this work, we explore MPC with an l1 performance criterion. We demonstrate how the non-smoothness of the objective function may yield either dead-beat or idle control performance.  相似文献   

9.
This paper presents an application of a customized linear programming (LP) based model predictive control strategy to the paper machine cross direction (CD) control problem. The objective of CD control is to maintain flat profiles of variables of interest by minimizing worst case deviations from setpoints (defects). These control problems can have as many as 200 actuators (inputs) and 400 sensor measurements (outputs). This large size coupled with the stringent real-time requirement of computing a control move in a few seconds poses a very challenging control problem. Computational results that demonstrate the effectiveness of this strategy will be presented. For typical disturbances this algorithm can compute provably optimal control moves for a 400 input ×400 output control problem in approximately 5 s versus approximately 90 s for a generic LP algorithm on a HP 9000/770 workstation.  相似文献   

10.
Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Recently, we have extended MPC to a class of discrete event systems that can be described by a model that is “linear” in the (max,+) algebra. In our previous work, we have only considered MPC for the deterministic noise-free case without modeling errors. In this paper, we extend our previous results on MPC for max-plus-linear systems to cases with noise and/or modeling errors. We show that under quite general conditions the resulting optimization problems can be solved very efficiently.  相似文献   

11.
Max-plus-linear (MPL) systems are a class of event-driven nonlinear dynamic systems that can be described by models that are “linear” in the max-plus algebra. In this paper we derive a solution to a finite-horizon model predictive control (MPC) problem for MPL systems where the cost is designed to provide a trade-off between minimizing the due date error and a just-in-time production. In general, MPC can deal with complex input and states constraints. However, in this paper we assume that these are not present and it is only required that the input should be a nondecreasing sequence, i.e. we consider the “unconstrained” case. Despite the fact that the controlled system is nonlinear, by employing recent results in max-plus theory we are able to provide sufficient conditions such that the MPC controller is determined analytically and moreover the stability in terms of Lyapunov and in terms of boundedness of the closed-loop system is guaranteed a priori.  相似文献   

12.
Considering a constrained linear system with bounded disturbances, this paper proposes a novel approach which aims at enlarging the domain of attraction by combining a set-based MPC approach with a decomposition principle. The idea of the paper is to extend the “pre-stabilizing” MPC, where the MPC control sequence is parameterized as perturbations to a given pre-stabilizing feedback gain, to the case where the pre-stabilizing feedback law is given as the linear combination of a set of feedback gains. This procedure leads to a relatively large terminal set and consequently a large domain of attraction even when using short prediction horizons. As time evolves, by minimizing the nominal performance index, the resulting controller reaches the desired optimal controller with a good asymptotic performance. Compared to the standard “pre-stabilizing” MPC, it combines the advantages of having a flexible choice of feedback gains, a large domain of attraction and a good asymptotic behavior.  相似文献   

13.
In this work, we consider nonlinear systems with input constraints and uncertain variables, and develop a robust hybrid predictive control structure that provides a safety net for the implementation of any model predictive control (MPC) formulation, designed with or without taking uncertainty into account. The key idea is to use a Lyapunov-based bounded robust controller, for which an explicit characterization of the region of robust closed-loop stability can be obtained, to provide a stability region within which any available MPC formulation can be implemented. This is achieved by devising a set of switching laws that orchestrate switching between MPC and the bounded robust controller in a way that exploits the performance of MPC whenever possible, while using the bounded controller as a fall-back controller that can be switched in at any time to maintain robust closed-loop stability in the event that the predictive controller fails to yield a control move (due, e.g., to computational difficulties in the optimization or infeasibility) or leads to instability (due, e.g., to inappropriate penalties and/or horizon length in the objective function). The implementation and efficacy of the robust hybrid predictive control structure are demonstrated through simulations using a chemical process example.  相似文献   

14.
For constrained piecewise linear (PWL) systems, the possible existing model uncertainty will bring the difficulties to the design approaches of model predictive control (MPC) based on mixed integer programming (MIP). This paper combines the robust method and hybrid method to design the MPC for PWL systems with structured uncertainty. For the proposed approach, as the system model is known at current time, a free control move is optimized to be the current control input. Meanwhile, the MPC controller uses a sequence of feedback control laws as the future control actions, where each feedback control law in the sequence corresponds to each partitions and the arbitrary switching technique is adopted to tackle all the possible switching. Furthermore, to reduce the online computational burden of MPC, the segmented design procedure is suggested by utilizing the characteristics of the proposed approach. Then, an offline design algorithm is proposed, and the reserved degree of freedom can be online used to optimize the control input with lower computational burden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号