首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Friction stir welding parameters were adjusted in order to achieve defect-free dissimilar lap joint of CP-Ti to 304 stainless steel. Titanium as a softer material was selected to be on the lap top side. The joint stir zone was found to be consisted of two main regions; the dominant fine dynamically re-crystallized titanium grains at the upper region and a minor composite-type microstructure of fragments of 304 stainless steel in a matrix of fine dynamically re-crystallized titanium grains in the lower region. The stir zone was separated from the 304 stainless steel side by an interface layer of TiFe-based crystal structure. Joint shear strength was measured; a maximum failure load of ∼73% of that of CP-Ti was achieved. This was associated with the occurrence of fracture at the joint intermetallic-based interface. The failure load value of the fabricated joints is related to the thickness of the intermetallic interface.  相似文献   

2.
A 304 stainless steel plate was lap joined to a CP-Ti one by friction stir welding technique. Stainless steel was selected as the top member. Sound dissimilar joints were achieved using an advancing speed of 50 mm/min and rotation speeds in the range of 700–1100 rpm. A region of vortices of bimetallic weld of 304 stainless steel and CP-Ti was formed in the lap joint fabricated using the highest applied tool rotation speed; this was associated with plasticizing of both members with the aid of a double-shoulder tool. In addition, due to complex material flow, mechanical interlock features were shaped that consists of extruded stainless steel into the plasticized titanium region. A maximum shear strength value of ∼119 MPa was achieved; this was found to be close to that of CP-Ti. The lap joint was strengthened by the formation of vortices of bimetallic weld of 304 stainless steel and CP-Ti and mechanical interlock features at joint interface due to complex materials flow.  相似文献   

3.
This paper presents a thermo-mechanical model to predict the thermal histories and the longitudinal residual stress difference at two sides of the butting surfaces using a factor named advancing retreating factor. This model allows taking into account of frictional heating dependent on both the temperature and the velocity of the tool, as well as heat generation due to plastic deformation dependent on temperature. The mechanical loads caused by the tool are added to the model for the mechanical analysis and the uncoupled thermo-mechanically equations are solved using a nonlinear finite element code ABAQUS. The numerical results showed that the longitudinal residual tensile stresses are asymmetrically distributed at different sides of the weld line due to the effect of the unsymmetrical temperature distribution and the tool forces. The calculated results have good agreement with experimental data that are presented in the literature.  相似文献   

4.
对4mm厚T4003铁素体不锈钢进行搅拌摩擦焊接工艺实验,研究焊接参数对接头组织特征、硬度分布及常温和低温冲击韧性的影响。结果表明:接头搅拌区和热力影响区由铁素体和马氏体双相组织构成;接头搅拌区组织沿试样厚度方向存在非均质性,且随转速的降低及焊接速率的增加越发显著;转速从150r/min增加至250r/min,前进侧热力影响区组织呈现小梯度过渡趋势,无明显变形拉长特征。焊缝硬度分布相对均匀,其最高硬度为290HV,约为母材的1.87倍。焊接参数和温度对接头的冲击吸收功有较大影响:常温(20℃)下,热影响区为母材的90%~92%,搅拌区为母材的85%~103%;低温(-20℃)下,热影响区为母材的87%~97%,搅拌区为母材的82%~95%,表明焊缝区仍具有较好强韧匹配。  相似文献   

5.
High-quality, defect-free welds were successfully produced in 409 ferritic stainless steel by friction stir welding. A remarkably fine-grained microstructure was observed in the stir zone, and the fraction of low angle grain boundary in the stir zone significantly increased as compared to that in the base material. An increase in plunging depth led to an increase of the fraction of low angle grain boundary, a decrease in grain size, and an increase in hardness in the stir zone.  相似文献   

6.
The objective of this work is to demonstrate the feasibility of friction stir welding (FSW) AISI 304 austenitic stainless steels. The tool used was formed of a tungsten‐based alloy. The specimens were welded on an 11 kW vertical milling machine. Defect‐free welds were produced on 2.5 mm plates of hot‐rolled AISI 304 austenitic stainless steels at travel speeds ranging from 40 to 100 mm/min with a constant rotating speed of 1000 rpm. Tensile strengths and hardness values of the weld interface were determined and microstructure features of these samples were investigated.  相似文献   

7.
Three friction welding processes are compared for temperature, stresses and strains, as well as strain rates developed in the early phases of the processes, which are essential in their successful development. These are friction stir welding (FSW), linear friction welding (LFW) and rotary friction welding (RFW). Their common characteristic is the use of friction to generate adequate energy and raise temperature locally in order to create favorable conditions for welding at the interface between two parts. Although the mode of movement is different for each one of them, welds are produced through plastic deformation. The Lagrangian and coupled Eulerian-Lagrangian numerical models developed have produced results which are in qualitative agreement with experiments and have shed a light on the commonalities of these friction welding processes.  相似文献   

8.
Friction stir lap welding was conducted on soft/hard metals. A welding tool was designed with a cutting pin of rotary burr made of tungsten carbide, which makes the stirring pin possible to penetrate and cut the surface layer of the hard metal. Magnesium alloy AZ31 and stainless steel SUS302 were chosen as soft/hard base metals. The structures of the joining interface were analyzed by scanning electron microscopy (SEM). The joining strength was evaluated by tensile shear test. The results showed that flower-like interfacial morphologies were presented with steel flashes and scraps, which formed bonding mechanisms of nail effect by long steel flashes, zipper effect by saw-tooth structure and metallurgical bonding. The shear strength of the lap joint falls around the shear strength of butt joint of friction stir welded magnesium alloy.  相似文献   

9.
率相关材料在搅拌摩擦焊接过程中的行为分析   总被引:1,自引:1,他引:1  
为研究金属粘性效应时的搅拌摩擦焊接材料流动行为,采用率相关本构描述搅拌摩擦焊接过程中的材料行为,并与非率相关材料模型的计算结果进行了对比.结果显示,由于考虑了金属的粘性效应.用率相关材料模型模拟搅拌摩擦焊接过程能更好地反映材料流动行为的本质.在搅拌摩擦焊接中,材料沿搅拌头切向方向的运动构成了搅拌摩擦焊接构件材料流动的主要形式.焊接构件-搅拌头接触面上的接触压力在搅拌头前方较大,在搅拌头后方较小,这一规律在率相关模型中更为明显.搅拌头前方材料在搅拌头的挤压之下向远离搅拌头的方向运动,而搅拌头后方的材料要填充由于搅拌头的移动而留下的空间,这一过程是保证搅拌摩擦焊接顺利完成的一个主要因素.因此,用率相关模型模拟搅拌摩擦焊接过程中的材料力学行为更为接近真实情况.  相似文献   

10.
This study evaluates the degree of sensitization (DOS) of 304 stainless steel joined by friction stir welding (FSW). Single-loop electrochemical potentiokinetic reactivation tests were performed using a 0.5 mol/L H2SO4 + 0.01 mol/L KSCN solution. Sensitization was promoted by exposition of the stainless steel at temperatures between 400°C and 850°C. The microstructure was characterized using optical microscopy to identify the weld zone and the base metal. The samples treated at 550°C showed the most severe intergranular corrosion. The DOS was lower in the weld zone than in the base metal after heat treatments. This reduction in the DOS for the weld zone indicates that FSW is a beneficial process in joining stainless steel.  相似文献   

11.
Stationary shoulder friction stir welding is a newly developed technique currently used for joining plates of relatively soft metals at different angular planes. The process is not currently applicable to steel, hence the present study was developed to investigate the theoretical and technical viability of stationary shoulder technology in DH36 steel. Aluminium welds were produced using both conventional rotating shoulder and stationary shoulder friction stir welding techniques, and steel welds were produced using only conventional friction stir welding techniques. The effects of stationary shoulder technology on both the microstructural evolution and resultant mechanical properties of aluminium have been evaluated so that the likely effects on steel could be predicted. In the aluminium welds, the stationary shoulder technique results in a distinct transition between stirred and unstirred material, contrasting to the gradual change typically seen in conventional friction stir welds produced with a rotating shoulder. An investigation of weld properties produced in DH36 steel has demonstrated that if the stationary shoulder weld technique was used, the microstructure likely to be formed, would be dominated by a bainitic ferrite phase and so would exhibit hardness and tensile properties in excess of the parent material. It is predicted that if the same abrupt transition between unstirred and stirred material observed in aluminium occurred in steel, this would lead to crack initiation, followed by rapid propagation through the relatively brittle weld microstructure. Hence, these findings demonstrate that without further design and process improvements, stationary shoulder friction stir welding is unlikely to be applicable to steel.  相似文献   

12.
A major dilemma faced in the nuclear industry is repair of stainless steel reactor components that have been exposed to neutron irradiation. When conventional fusion welding is used for repair, intergranular cracks develop in the heat-affected zone(HAZ). Friction stir processing(FSP), which operates at much lower peak temperatures than fusion welding, was studied as a crack repair method for irradiated 304 L stainless steel. A numerical simulation of the FSP process in 304 L was developed to predict temperatures and recrystallized grain size in the stir zone. The model employed an Eulerian finite element approach,where flow stresses for a large range of strain rates and temperatures inherent in FSP were used as input. Temperature predictions in three locations near the stir zone were accurate to within 4%, while prediction of welding power was accurate to within 5% of experimental measurements. The predicted recrystallized grain sizes ranged from 7.6 to 10.6 μm, while the experimentally measured grains sizes in the same locations ranged from 6.0 to 7.6 μm. The maximum error in predicted recrystallized grain size was about 39%, but the associated stir zone hardness from the predicted grain sizes was only different from the experiment by about 10%.  相似文献   

13.
Friction stir welding is a relatively new solid-state joining technique which is widely adopted in different industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a highly complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints and their three dimensional nature make it difficult to develop an overall system of governing equations for theoretical analyzing the behavior of the friction stir welded joints. The experiments are often time consuming and costly. To overcome these problems, numerical analysis has frequently been used since the 2000s. This paper reviews the latest developments in the numerical analysis of friction stir welding processes, microstructures of friction stir welded joints and the properties of friction stir welded structures. Some important numerical issues such as materials flow modeling, meshing procedure and failure criteria are discussed. Numerical analysis of friction stir welding will allow many different welding processes to be simulated in order to understand the effects of changes in different system parameters before physical testing, which would be time-consuming or prohibitively expensive in practice. The main methods used in numerical analysis of friction stir welding are discussed and illustrated with brief case studies. In addition, several important key problems and issues remain to be addressed about the numerical analysis of friction stir welding and opportunities for further research are identified.  相似文献   

14.
In this study, the friction stir butt welding of 2-mm-thick high nitrogen-containing stainless steel (HNS; Ni-free austenitic stainless steel containing 1 mass% nitrogen) plates was performed using a load-controlled friction stir welding (FSW) machine with a Si3N4-based tool at various welding speeds, i.e., 50 mm/min, 100 mm/min, 200 mm/min and 300 mm/min, and a constant tool rotating speed of 400 rpm. To determine the optimum welding conditions to create reliable HNS FSW joints, the effect of the heat input on the mechanical properties of the HNS FSW joints was studied. The mechanical properties were evaluated by the Vickers hardness test and the tensile strength test. Full-penetrated and defect-free butt welded joints were successfully produced, under all the applied welding conditions. The stir zones consisted of very fine grained structures and showed an increase in the Vickers hardness. These joints also showed a higher tensile strength and yield strength than the base metal. In particular, the FSW welds obtained at a welding speed of 100 mm/min, which showed the best mechanical properties, had a relatively higher Vickers hardness, which indicates a good relationship between the welding parameter (heat input) and the hardness profile due to the microstructure refinements. It was estimated that these welding conditions were optimal, and under these conditions both grain growth and α-phase formation were prevented.  相似文献   

15.
16.
Oxide dispersion strengthened (ODS) steels can be used as the structural materials in the future fusion reactors and the fuel cladding materials in the advanced fission reactors. However, the weldability of ODS steels is a severe problem. In the present study, defect-free joints of the 15Cr-ODS ferritic steel were achieved by friction stir welding at different rotation speeds. The recrystallization, hardness and tensile properties are highly related with the rotation speed of the stir tool. The higher rotation speed results in coarser grains in the top SZ, while the grain size exhibits more complicated relation with the rotation speed in the SZ center. The joint welded at 250 rpm exhibits a maximum tensile strength of 974 MPa that reaches about 84% of that of the base metal.  相似文献   

17.
Study of friction stir welding of aluminum   总被引:1,自引:0,他引:1  
A half-cold hardening aluminum plate were friction-stir welded at various rotation speeds (850–1860 rpm) and travel rates of 30 to 160 mm/min with welding forces ranging between 2.5 and 10 MPa using different dimension welding heads. Experimental results show that the dimensions of the welding head are critical to produce sound welds. The microstructure of the weld is characterized by its much finer and equiaxed grains as contrasted with the coarse and band-like structure of the parent aluminum plate. Tensile strength of the welds is about 20% lower than that of the hardening aluminum plate, but about 10% higher microhardness is demonstrated by the welds in comparison with that of the aluminum plate in annealing condition. Moreover, travel rate of the welding head pin has a strong effect on microhardness and tensile strength of the FSW welds, and the ratio of rotation speed and travel rate of the head should be in a reasonable range to obtain high performance welds. The variables of the welding process are also discussed in terms of heat balance and energy input of the welds.  相似文献   

18.
Lap joints of friction stir welding between aluminium and stainless steel sheets were conducted using a welding tool with a cutting pin. The atomic diffusion of Fe–Al system during the severe plastic deformation was investigated. The interfacial microstructure and metallurgical reaction was analysed. The metallurgical reaction layers were identified as a compounds containing a phase of Al3Fe, partial solid solution of Fe and Al, and amorphous with a thickness of 0.9–3.3?μm which depending on the process parameters. The interdiffusion coefficient between Al and Fe atoms is about 4 orders of magnitude compared with that under thermal equilibrium state. The nanocrystalline and partial amorphous were formed near the interface which may caused by the enhanced atomic diffusion.  相似文献   

19.
采用新型超声振动强化搅拌摩擦焊接工艺实现了6061-T6铝合金以及QP980高强钢的搭接焊,对比分析了有无超声作用下,接头的宏观形貌、微观组织和拉伸剪切性能,同时研究了超声振动对焊接载荷的影响。结果表明:焊接前对母材施加超声振动,可以起到软化母材的作用,促进了材料的塑性流动,扩大了铝/钢界面区和焊核区,使更多的钢颗粒随搅拌针旋转进入铝合金侧,在界面区边缘形成钩状结构,进而提高了接头的失效载荷;超声改变了FSW接头断裂位置和断口形貌,提高了接头力学性能,在本实验工艺参数范围内,接头最大的平均失效载荷为4.99 kN;当焊接速度为90 mm/min,下压量为0.1 mm时,施加超声振动使接头的平均失效载荷提高了0.98 kN,拉剪性能提升28.24%;施加超声振动后轴向力Fz、搅拌头扭矩Mt和主轴输出功率分别下降2.46%,6.44%和4.59%。  相似文献   

20.
A three-dimensional friction stir welding (FSW) process model has been developed based on fluid mechanics. The material transport in the welding process has been regarded as a laminar, viscous, and non-Newtonian liquid that flows past a rotating pin. A criterion to divide the weld zone has been given on the basis of cooperation of velocity field and viscosity field. That is, the η0-easy-flow zone that existed near the tool pin corresponded to the weld nugget zone; the area between the η0-easy-flow zone and η1-viscosity band is corresponded to the thermal-mechanical affected zone (TMAZ). The model gives some useful information to improve the understanding of material flow in FSW through the simulation result of velocity distribution. In order to appraise the friction stir pin design, three kinds of pin geometry, one is column pin, the second is taper pin, and the last one is screw threaded taper pin, were used in the model. The pin geometry seriously affected the simulation result of velocity distribution in the η0-easy-flow zone. The velocity distribution in the η0-easy-flow zone can be considered as the criterion of optimizing friction stir tool design. This study will benefit to direct the friction stir tool design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号