首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, saturated flow boiling characteristics of deionized water in parallel microchannels are investigated experimentally. The silicone microchannel heat sink consists of 29 parallel square microchannels having hydraulic diameters of 150 µm. Experiments have been conducted for four different values of the mass flux consisting of 51, 64.5, 78 and 92.6 kg/m2s and heat flux values from 59.3 to 84.1 kW/m2. Inlet temperature of deionized water is kept at 50 ± 1 °C. Heat transfer and pressure drop are examined for varying values of the governing parameters. Simultaneous high-speed video images have been taken as well as temperature and pressure measurements. The flow visualization results lead to key findings for flow boiling instabilities and underlying physical mechanisms of heat transfer in microchannels. Quasi-periodical rewetting and drying, rapid bubble growth and elongation toward both upstream and downstream of the channels and reverse flow are observed in parallel microchannels.  相似文献   

2.
Heat transfer and pressure drop characteristics of CO2 flow boiling in mini tube with micro fins of zero helix angle were experimentally investigated. The working conditions cover mass flux from 100 to 600 kg m−2 s−1, heat flux from 1.67 to 8.33 kW m−2, vapor quality from 0 to 0.9 and saturation temperature from 1 to 15 °C. The results show that the heat transfer coefficient increases with increasing vapor quality, but sharply decreases at vapor quality around 0.2~0.4 under most conditions, and the dryout vapor quality decreases with the increasing heat flux and saturation temperature. Pressure drop increases with increasing mass flux and heat flux, or decreasing saturation temperature, and mass flux is the major influence factors. The enhancement ratio of heat transfer coefficient is higher than that of pressure drop, which shows potentials of using such kind tubes to enhance the overall heat transfer performance. A heat transfer coefficient correlation and a pressure drop correlation for 0° helix angle micro-fin tube were developed, and they agree well with the experimental data.  相似文献   

3.
Li D  Wu GS  Wang W  Wang YD  Liu D  Zhang DC  Chen YF  Peterson GP  Yang R 《Nano letters》2012,12(7):3385-3390
Thermal management has become a critical issue for high heat flux electronics and energy systems. Integrated two-phase microchannel liquid-cooling technology has been envisioned as a promising solution, but with great challenges in flow instability. In this work, silicon nanowires were synthesized in situ in parallel silicon microchannel arrays for the first time to suppress the flow instability and to augment flow boiling heat transfer. Significant enhancement in flow boiling heat transfer performance was demonstrated for the nanowire-coated microchannel heat sink, such as an early onset of nucleate boiling, a delayed onset of flow oscillation, suppressed oscillating amplitudes of temperature and pressure drop, and an increased heat transfer coefficient.  相似文献   

4.
This study examined the two-phase flow boiling pressure drop and heat transfer for propane, as a long term alternative refrigerant, in horizontal minichannels. The pressure drop and local heat transfer coefficients were obtained for heat fluxes ranging from 5–20 kW m?2, mass fluxes ranging from 50–400 kg m?2 s?1, saturation temperatures of 10, 5 and 0 °C, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and lengths of 1000 mm and 2000 mm, respectively. The present study showed the effect of mass flux, heat flux, inner tube diameter and saturation temperature on pressure drop and heat transfer coefficient. The experimental results were compared against several existing pressure drop and heat transfer coefficient prediction methods. Because the study on evaporation with propane in minichannels was limited, new correlations of pressure drop and boiling heat transfer coefficient were developed in this present study.  相似文献   

5.
Heat transfer and critical heat fluxes to helium boiling in a 2 mm id copper tube (100 mm long) were measured in the pressure range 1.1–1.5 atm and at mass velocities 18–96 kg m?2s?1. Corresponding Reynolds numbers are (1.2–6.2) × 104. Experimentally obtained heat transfer coefficients show satisfactory agreement with those calculated according to the Kutateladze equation but with less pronounced pressure dependence. It was found that in the boiling region developed quality did not influence the heat transfer coefficient. An expression was obtained, which describes with ±10% error, the dependence of critical heat flux on mass flow rate in the pressure range 1.1–1.5 atm and mass quality 0.33–0.6.  相似文献   

6.
Boiling flows are encountered in a wide range of industrial applications such as boilers, core and steam generators in nuclear reactors, petroleum transportation, electronic cooling and various types of chemical reactors. Many of these applications involve boiling flows in conventional channels (channel size ≥ 3 mm). The key design issues in two phase flow boiling are variation in flow regimes, occurrence of dry out condition, flow instabilities, and understanding of heat transfer coefficient and vapor quality. This paper briefly reviews published experimental and modeling work in these areas. An attempt is made to provide a perspective and to present available information on boiling in small channels in terms of channel size, flow regimes, heat transfer correlations, pressure drop, critical heat flux and film thickness. An attempt is also made to identify strengths and weaknesses of published approaches and computational models of boiling in small channels. The presented discussion and results will provide an update on the state-of-the-art and will be useful to identify and plan further research in this important area.  相似文献   

7.
This study investigated the effect of tube diameter on flow boiling characteristics of refrigerant R32 in horizontal small-diameter tubes with 1.0, 2.2, and 3.5 mm inner diameters. The boiling heat transfer coefficient and pressure drop were measured at 15 °C saturation temperature. The effects of mass velocity, heat flux, quality, and tube diameter were clarified. The flow pattern of R32 for adiabatic two-phase flow in a horizontal glass tube with an inner diameter of 3.5 mm at saturation temperature of 15 °C was investigated. Flow patterns such as plug, wavy, churn, and annular flows were observed. The heat transfer mechanisms of forced convection and nucleate boiling were similar to those in conventional-diameter tubes. In addition, evaporation heat transfer through a thin liquid film in the plug flow region for low quality, mass velocity, and heat flux was observed. The heat transfer coefficient increased with decreasing tube diameter under the same experimental condition. The fictional pressure drop increased with increasing mass velocity and quality and decreasing tube diameter. The experimental values of the heat transfer coefficient and frictional pressure drop were compared with the values calculated by the empirical correlations in the open literature.  相似文献   

8.
In this study, condensation heat transfer coefficients and pressure drops of R-410A are obtained in flattened microfin tubes made from 7.0 mm O.D. round microfin tubes. The test range covers saturation temperature 45 °C, mass flux 100–400 kg m−2 s−1 and quality 0.2–0.8. Results show that the effect of aspect ratio on condensation heat transfer coefficient is dependent on the flow pattern. For annular flow, the heat transfer coefficient increases as aspect ratio increases. For stratified flow, however, the heat transfer coefficient decreases as aspect ratio increases. The pressure drop always increases as aspect ratio increases. Possible reasoning is provided based on the estimated flow pattern in flat microfin tubes. Comparison with existing round microfin tube correlations is made.  相似文献   

9.
An experimental study was conducted on a 19.05 mm (outer diameter) dimpled enhanced tube to evaluate the in-tube two phase heat transfer and pressure drop performance in an annular section created between the enhanced tube and a solid round PVC rod. The purpose of the study was to understand the effect of forced early transition to annular flow on the pressure drop and heat transfer coefficient in a horizontal tube. The refrigerant studied was R-134a at a saturation temperature of 5 °C, heat flux range 2.5 to 15 kW m−2, mass flux from 80 to 200 kg m−2 s−1 and inlet vapor quality of 0.12 to 0.72. Flow pattern and pressure drop results were obtained under adiabatic conditions. Under similar operating conditions the enhanced tube with a rod exhibited three times higher heat transfer performance versus same size smooth empty tube with lower pressure drop penalty at lower mas flux.  相似文献   

10.
Characteristics of the process and heat transfer of subcooled water boiling on mesostructured surfaces obtained by microarc oxidation of titanium foil with formation of a TiO2 layer and deposition of Al2O3 particles from boiling nanofluid have been experimentally investigated. The experiments have been carried out in the forced flow of deaerated water in a vertical rectangular channel, 21 × 5 mm in size. The ranges of regime parameters are as follows: water mass velocity is up to 650 kg/(m2 s), subcooling is 30–75°C, pressure is ~105 Pa, and heat flux rate is 0.7–5.0 MW/m2. It is established that the number of active nucleation sites is (70–80) × 105 1/(m2 s) at the heat flux of 1.5–2.0 MW/m2. Significant subcooling of the liquid and good wettability of the structured surface provide intense deactivation and lead to random spatial distribution of the nucleation sites. The characteristic size of vapor bubbles is about 200–250 μm and the bubble lifetime is 200–500 μs. Application of the coating prepared by microarc oxidation enhances heat transfer by 20–30%. At high subcoolings of liquid, the characteristics of boiling on smooth surfaces and surfaces with the coating were fairly close.  相似文献   

11.
An experimental investigation on flow visualization of adiabatic and condensation conditions as well as condensation heat transfer coefficient and pressure drop of methane in a horizontal smooth tube was carried out. The tests were conducted at saturation pressure of 2–3.5 MPa with mass flux of 99–255 kg m−2 s−1 and fluid-to-wall temperature difference of 4.8–20.2 K throughout the vapor quality range. The effects of mass flux, saturation pressure, vapor quality and temperature difference were studied and discussed. In order to expand the range of temperature difference, some condensation heat transfer coefficients of ethane with larger temperature differences (19.7–39.2 K) were also reported in this paper. The experimental data were compared with many well-known correlations of condensation heat transfer coefficient and pressure drop. An improved heat transfer correlation for different flow patterns was proposed and predicted the experimental results well with a mean absolute relative deviation of 6.86%.  相似文献   

12.
Thermal characteristics of ammonia flow boiling in a microfin plate evaporator are experimentally investigated. Titanium microfin heat transfer surface is manufactured to enhance boiling heat transfer. Longitudinally- and laterally-microfined surfaces are used and those performances are compared. Heat transfer coefficient of microfin plate evaporator is also compared with that of plain-surface plate evaporator. The effects of mass flux, heat flux, channel height, and saturation pressure on heat transfer coefficient are presented and discussed. The experiments are conducted for the range of mass flux (5 and 7.5 kg m−2 s−1), heat flux (10, 15, and 20 kW m−2), channel height (1, 2, and 5 mm), and saturation pressure (0.7 and 0.9 MPa). Heat transfer coefficient is compared with that predicted by available empirical correlations proposed by other researchers. Modified correlations using Lockhart-Martinelli parameter to predict heat transfer coefficient are developed and they cover more than 87% of the experimental data.  相似文献   

13.
This study deals with heat transfer enhancement surface manufactured by thermal spraying. Two thermal spraying methods using copper as a coating material, wire flame spraying (WFS) and vacuum plasma spraying (VPS), were applied to the outside of copper cylinder with 20 mm OD. The surface structure by WFS was denser than that by VPS. The effect of gravity on boiling heat transfer coeffcient and wall superheat at the onset of boiling were experimentally evaluated under micro- and hyper-gravity condition during a parabolic trajectory flight of an airplane. Pool boiling experiments in saturated liquid of HCFC123 were carried out for heat fluxes between 1.0 and 160 kW/m2 and saturated temperature of 30 °C. As a result, the surface by VPS produced higher heat transfer coefficient and lower superheat at the onset of boiling under microgravity. For the smooth surface, the effect of gravity on boiling heat transfer coefficient was a little. For the coating, a large difference in heat transfer coefficient to gravity was observed in the moderate heat flux range. The heat transfer coefficinet decreased as gravity changed from the normal to hypergravity, and was improved as gravity changed from the hyperto microgravity. The difference in heat transfer coefficient between the normal and microgravity was a little. Heat transfer enhancement factor was kept over the experimental range of heat flux. It can be said that boiling behavior on thermal spray coating might be influenced by flow convection velocity.  相似文献   

14.
The evaporation heat transfer coefficient and pressure drop of R-410A flowing through a horizontal aluminium rectangular multiport mini-channel having 3.48 mm hydraulic diameter are experimentally investigated. The test runs are performed at mass flux ranging between 200 and 400 kg/m2 s. The heat fluxes are between 5 and 14.25 kW/m2 and the saturation temperatures range between 10 and 30 °C. The pressure drop across the test section is directly measured by a differential pressure transducer. The effects of the imposed wall heat flux, mass flux, vapour quality, and saturation temperature on the evaporation heat transfer and pressure drop are also discussed. The results from the present experiment are compared with those obtained from the existing correlation. New correlations for the evaporation heat transfer coefficient and pressure drop of R-410A flowing through a multiport mini-channel are proposed for practical applications.  相似文献   

15.
A study of two-phase flow and heat transfer in a small tube of 1 mm internal diameter has been conducted experimentally as part of a wider study of boiling in small channels. R141b has been used as the working fluid. The boiling heat transfer in the small tube has been measured over a mass flux range of 300–2000 kg/m2 s and heat flux range of 10–1150 kW/m2. In this paper the boiling map for a mass velocity of 510 kg/m2 s and heat flux of 18–72 kW/m2 is discussed and the problems of determining heat transfer coefficients in small channels are highlighted.  相似文献   

16.
Experimental results of local heat transfer coefficients for the boiling of working fluids (solutions of R600a with mineral naphthenic oil ISO VG 15) in a smooth tube with a small diameter (5.4 mm) are presented. The experiments have been performed in the following ranges: for the inlet pressure from 65.7 kPa to 82.2 kPa, for the heat flux from 2500 to 3300 W m−2, and for the mass velocity of the working fluid from 11.90 to 15.99 kg m−2 s−1). The quantitative estimation in reduction of the heat transfer coefficient of the wetted surface in the evaporator at a high oil concentration in the mixture is examined. The influence of heat flux and mass velocities on the values of the local heat transfer coefficients is analyzed. The equation for the modelling of the local heat transfer coefficient for boiling of an isobutane/compressor oil solution flow in the tube is suggested.  相似文献   

17.
The condensation heat transfer coefficient and pressure drop of CO2 in a multiport microchannel with a hydraulic diameter of 1.5 mm was investigated with variation of the mass flux from 400 to 1000 kgm−2s−1 and of the condensation temperature from −5 to 5 °C. The heat transfer coefficient and pressure drop increased with the decrease of condensation temperature and the increase of mass flux. However, the rate of increase of the heat transfer coefficient was retarded by these changes. The gradient of the pressure drop with respect to vapor quality is significant with the increase of mass flux. The existing models for heat transfer coefficient overpredicted the experimental data, and the deviation increased at high vapor quality and at high heat transfer coefficient. The smallest mean deviation of ±51.8% was found by the Thome et al. model. For the pressure drop, the Mishima and Hibiki model showed mean deviation of 29.1%.  相似文献   

18.
Boiling heat transfer at water flow with low mass flux in heat sink which contained rectangular microchannels was studied. The stainless steel heat sink contained ten parallel microchannels with a size of 640 × 2050 μm in cross-section with typical wall roughness of 10–15 μm. The local flow boiling heat transfer coefficients were measured at mass velocity of 17 and 51 kg/m2s, heat flux on 30 to 150 kW/m2 and vapor quality of up to 0.8 at pressure in the channels closed to atmospheric one. It was observed that Kandlikar nucleate boiling correlation is in good agreement with the experimental data at mass flow velocity of 85 kg/m2s. At smaller mass flux the Kandlikar model and Zhang, Hibiki and Mishima model demonstrate incorrect trend of heat transfer coefficients variation with vapor quality.  相似文献   

19.
The flow boiling heat transfer coefficient of the low-GWP (global warming potential) refrigerant HFO-1234yf inside a smooth small-diameter horizontal tube (inner diameter: 2 mm) was experimentally investigated. The local heat transfer coefficient was measured at heat fluxes of 6-24 kW m−2, mass fluxes of 100-400 kg m−2 s−1, an evaporating temperature of 288.15 K, and an inlet vapor quality of 0-0.25. The results show that the effect of heat flux on the heat transfer was large at low vapor quality, while the effect of mass flux was large at high vapor quality. The heat transfer coefficient of HFO-1234yf was almost the same as that of R-134a. The heat transfer coefficients calculated based on correlations with Saitoh et al. agreed well with the measured values compared to other correlations. The measured pressure drop agreed well with that predicted by the Lockhart-Martinelli correlation.  相似文献   

20.
This article reports the condensing flow heat transfer coefficient and pressure drop results of propane (R290) flowing through a square section horizontal multiport mini-channel tube made of aluminium having an internal diameter of 1.16 mm and a condensing length of 259 mm. Pressure drop and two phase flow experiments were performed at saturation temperatures of 30, 40 and 50 °C. Heat flux was varied from 15.76 to 32.25 kWm−2 and mass velocity varied from 175 to 350 kg m−2 s−1. The results show that the two-phase friction pressure gradient increases with the increase of mass velocity and vapour quality and with the decrease of saturation temperature. The heat transfer coefficients showed to increase with increases of vapour quality and mass velocity while increases of saturation temperature were observed to reduce heat transfer coefficient. The two phase frictional pressure drop correlations of Sun and Mishima and Agarwal and Garimella, and the two-phase flow heat transfer correlations of Koyama et al. and Wang et al. predicted well the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号