首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a harmonic elimination and suppression scheme for a dual-inverter-fed open-end winding induction motor drive is presented. Two isolated dc-link sources with voltage ratio of approximately 1 : 0.366 are required for the present drive. These two isolated do links feeding two inverters to drive the open-end winding induction motor eliminate the triplen harmonic currents from the motor phase. The pulsewidth-modulation scheme proposed enables the cancellation of all the 5th- and 7th-order (6n /spl plusmn/ 1, where n = 1, 3, 5, 7, etc.) harmonic voltages and suppresses the 11th- and 13th-order harmonic voltage amplitudes in the motor phase voltage, in all modulation ranges. The next higher order harmonics present in the motor phase voltages are 23rd, 25th, 35th, 37th etc. (6n /spl plusmn/ 1, n = 4, 6, etc.). By using triangular carrier wave and proper modulating waves for each inverter, the open-end winding induction motor can be operated in the entire modulation range, eliminating all the 6n /spl plusmn/ 1 harmonics (n = 1, 3, 5, 7, etc.) coupled with 11th and 13th harmonic suppression. The proposed scheme also gives a smooth transition to the overmodulation region.  相似文献   

2.
The construction of miniaturized rotating electric machines through microfabrication techniques is becoming a reality. Applications of such micromotors include miniaturized pumps, compressors, fans, coolers, and turbogenerators. However, the characteristics of these devices make the design of power electronics for them challenging. These characteristics include high-voltage and high frequency operation, tightly constrained operating waveforms and timing, and capacitive input impedances. This paper explores the design of power electronics for microfabricated electrostatic induction machines. We describe the structure and operation of these machines, and establish the operating requirements of power converters for them. We provide a comparison of inverter topologies for this application, and propose an appropriate architecture. The design and experimental evaluation of a prototype six-phase, five-level inverter for this application is presented. The inverter operates at frequencies up to 2 MHz and at voltages up to 300 V, and meets the stringent waveform and timing constraints posed by this application.  相似文献   

3.
The implementation of a direct method of field orientation that requires little knowledge of machine parameters and uses only readily measurable quantities is discussed. The system uses tapped stator windings to measure the air-gap flux. The signals from the tapped windings are also used in a flux-regulation loop. A speed controller is implemented using the ripples created in the tapped windings by the motion of the rotor slots through the flux for speed information  相似文献   

4.
Pulse-width modulated (PWM) inverters are known to generate common mode voltages which cause motor bearing currents in the induction motor drives. They also result in leakage currents which act as sources of conducted electromagnetic interference in the drive system. The common mode voltage generated by a conventional three-level inverter can be eliminated by switching only the voltage space vectors which do not produce the common mode voltage. This paper presents a PWM switching strategy to eliminate common mode voltage using the open-end winding configuration for the induction motor. The switching strategy presented in this paper, does not generate any alternating common mode voltages in the drive system and hence the electrostatic coupling of the common mode voltage, which results in the bearing currents and the leakage currents, is avoided. The proposed scheme is devoid of neutral point voltage fluctuations and does not require neutral point clamping diodes, when compared to the common mode elimination scheme based on the conventional three-level inverter topology. Also, the present scheme uses a single dc-link with half the voltage compared to the conventional three-level inverter based scheme.  相似文献   

5.
A PWM pulse pattern optimization method using pulse frequency modulation (PFM) is described. In conventional PWMs the pulse frequency is kept constant. In the proposed PFM, however, the pulse frequency is adjusted. The PFM technique is intended to not only reduce the magnetic acoustic noises of driven motors but also to improve the performance of sinusoidal inverters. The PWM pulse patterns are basically controlled so that the time-integral function of the voltage vectors in the space vector notation may draw a circular locus. In addition to this, the pulse frequency, of PWM is also controlled so that the performance index (PI), which represents the degree of achieved objectives, may be minimized. Two PIs, one for minimizing the distortion of output currents and the other for minimizing the torque pulsation of driven motors, are employed. The method is implemented using a single-chip microprocessor, and the experimental results demonstrate its validity  相似文献   

6.
The different voltage waveforms along with their distribution in the inverter fed motor windings are presented with the help of a specially equipped machine. As a matter of fact, even though a lot has been said on the possible premature failure of such machines, little is known on the internal voltages appearing in the windings or for that matter from a theoretical point of view, the reasons for such voltage distributions. The aim of this paper is to demonstrate that a far more accurate picture emerges by taking into account the energy losses in the iron frame. The use of a new mathematical tool called “diffusive representation” permits a simple model to be obtained for time-domain simulations. Such an approach gives very good results as demonstrated in the paper  相似文献   

7.
《变频器世界》2006,(4):26-28
A scheme for a three-level voltage space phasor generation with common-mode voltage elimination is proposed. An open-end-winding induction motor, fed from both ends by two three-level inverters, which are realized by a cascading two two-level inverter, is used in this configuration. The voltage space vectors of individual three- level inverters, which generate the same common mode voltage in the inverter pole voltage, are variously grouped When these voltage space vectors are used to switch individual three-level inverters, it results in zero commonmode voltage across the motor windings. In the proposed scheme, voltage space phasors from individual inverters with zero common mode voltage in the inverter pole voltage are used for PWM control. For the proposed drive configuration, the DC link voltage requirement is only half when compared to the DC link voltage of a conventional neutral-point-clamped (NPC) three-level inverter. The proposed inverter configuration offers reduced circuit and control complexity when compared to similar schemes with NPC or H-bridge inverter configurations.  相似文献   

8.
Two structures, a switched-capacitor (SC)-based boost converter and a two-level inverter, are connected in cascade. The dc multilevel voltage of the first stage becomes the input voltage of the classical inverter, resulting in a staircase waveform for the inverter output voltage. Such a multilevel waveform is close to a sinusoid; its harmonics content can be reduced by multiplying the stage number of the SC converter. The output low-pass filter, customary after a two-level inverter, becomes obsolete, resulting in a small size of the system, as the SC circuit can be miniaturized. Both stages are operated at a high switching frequency, resulting in a high-frequency inverter output, as required by some industrial applications. A Fourier analysis of the output waveform is performed. The design is optimized with reference to the nominal duty-cycle for obtaining the minimum total harmonic distortion. Simulations and experiments on two prototypes, one with a five-level output and one with a seven-level output, confirm the theoretical analysis.  相似文献   

9.
This paper presents a unique design for flying capacitor type multilevel inverters with fault-tolerant features. When a single-switch fault per phase occurs, the new design can still provide the same number of converting levels by shorting the fault power semiconductors and reconfiguring the gate controls. The most attractive point of the proposed design is that it can undertake the single-switch fault per phase without sacrificing power converting quality. Future more, if multiple faults occur in different phases and each phase have only one fault switch, the proposed design can still conditionally provide consistent voltage converting levels. This paper will also discuss the capacitor balancing approach under fault-conditions, which is an essential part of controlling flying capacitor type multilevel inverters. Suggested fault diagnosing methods are also discussed in this paper. Computer simulation and lab results validate the proposed controls.  相似文献   

10.
An electromagnetic suspension system has been developed that cuts off electric power-collecting devices from a magnetically levitated vehicle. This system makes it possible to transport materials with no mechanical contact at all between the vehicle and ground facilities. A control system for linear induction motors used in the magnetically levitated carrier system is described. The system was developed to transport materials in an environment which must be kept free from even microscopic dust motes and trivial noise. The linear induction motor control method used for positioning a vehicle at the station is described along with several kinds of switches without any mechanical motion in the ground facilities. A supervisory control system for the magnetically levitated carrier system is also discussed  相似文献   

11.
Three phase voltage-fed inverter induction motor drives are prone to shoot through and other inverter faults that cause the drive system to shut down. The paper describes a novel strategy for restarting the drive in variable voltage variable frequency single phase mode in the presence of open base drive and shoot through fault in the inverter. The proposed method requires only the motor terminal voltages and currents to be measured. Therefore, it can be applied to even low performance open loop drives with the addition of two motor terminal voltage sensors. The starting algorithm has been verified by computer simulation and experiments on a 1 hp laboratory prototype. Experimental results are in good agreement with simulation predictions. The starting strategy described in this paper is expected to provide an economic alternative to more expensive redundancy techniques which find justification only in a few specialized applications  相似文献   

12.
This paper presents a high-levels multilevel inverter (MLI) with a reduced number of the required switches. Forty-nine levels can be obtained in the output voltage from this circuit by using only 12 semiconductor switches, while in conventional topologies of MLI, a higher number of switches is required producing a lower number of levels in the output voltage. Reduction in the number of semiconductor switches, gate drivers, DC voltage sources and increasing the number of voltage levels are advantages of the proposed MLI compared with other topologies. These advantages result in smaller size, lower loss and low installation cost. Total harmonic distortion (THD) in the output waveform of the inverter is very low, thus, using a filter to improve the output waveform is not needed. A switching pulse system has been presented to produce nearly sinusoidal waveforms. Mathematical relations and switching states of the proposed topology have been discussed. Simulation results have been obtained and studied. The prototype of the modified MLI has been built and tested in the laboratory using a dSPACE (DS1104) evaluation board in order to verify the simulation results. Several of the experimental results of the proposed topology have been included and discussed.  相似文献   

13.
A novel three-level pulsewidth modulation (PWM) rectifier/inverter is proposed: this single-phase three-level rectifier with power factor correction and current harmonic reduction is proposed to improve power quality. A three-phase three-level neutral point clamped (NPC) inverter is adopted to reduce the harmonic content of the inverter output voltages and currents. In the adopted rectifier, a switching mode rectifier with two AC power switches is adopted to draw a sinusoidal line current in phase with mains voltage. The switching functions of the power switches are based on a look-up table. To achieve a balanced DC-link capacitor voltage, a capacitor voltage compensator is employed. In the NPC inverter, the three-level PWM techniques based on the sine-triangle PWM and space vector modulation are used to reduce the voltage harmonics and to drive an induction motor. The advantages of the adopted th-ree-level rectifier/inverter are (1) the blocking voltage of power devices (T1, T2, Sa1-Sc4) is clamped to half of the DC-link voltage, (2) low conduction loss with low conduction resistance due to low voltage stress, (3) low electromagnetic interference, and (4) low voltage harmonics in the inverter output. Based on the proposed control strategy, the rectifier can draw a high power factor line current and achieve two balance capacitor voltages. The current harmonics generated from the adopted rectifier can meet the international requirements. Finally, the proposed control algorithm is illustrated through experimental results based on the laboratory prototype.  相似文献   

14.
Digital control algorithms are proposed for a position-controlled system with an inverter-fed induction motor. Two structures for the positioning servomechanism are suggested in which the appropriate digital control laws are applied and a straightforward method for adjusting of controller parameters is developed. The method enables the designer to match the desired dynamic performance and to eliminate the steady-state position error due to the presence of a constant or a slowly varying load disturbance. Particular attention is paid to the nonlinear position control design, which preserves the desired response even in the case when electrical torque reaches limits imposed by the inverter current capacity. To illustrate the proposed design procedure and to verify the efficiency of the nonlinear control laws, simulation results and waveforms from an experimental setup are presented  相似文献   

15.
Wireless Networks - Induction motor with scheme open end winding (OEW) has attract many attention in the recent time as a compromising alternative of multi-level inverter. The structure contains of...  相似文献   

16.
为发展完善中压电机变频调速系统,分析了中压大功率变频器试验系统DSP控制软件的结构,设计了主程序、PWM调制模块、顺序控制模块、WF曲线控制模块,给出了各功能块的实现方法,并对试验结果进行了分析.试验表明所设计的中压变频器系统输出稳定、可靠性高且性能优良.  相似文献   

17.
The imbricated-cell multilevel converter is well suited to high power applications. It allows the series connection of n switches with natural voltage sharing between these switches enabled through the connection of n-1 flying capacitors. This paper deals with the application of soft-switching on this topology; to date, only the hard-switching mode has been studied. The use of soft switching enables an increase of the switching frequency (resulting in the size reduction of the flying capacitors) without a decrease of the converter efficiency. Of the soft switching methods considered, the Auxiliary Resonant Commutated Pole (ARCP) technique was chosen due to the relative ease in which it can be incorporated into the converter topology. Furthermore, this technique offers numerous advantages: loss reduction, no added stress to the switches and compatibility with PWM control. The main properties of the ARCP multicell converter are the same as the hard-switched topology: an increase of the apparent output switching frequency and natural self-balancing of the flying-capacitor voltages. This paper presents the results of both simulations performed and measurements taken from an experimental set-up in order to study the viable system functioning. The introduction of soft-switching strongly complicates the theoretical study of the balancing mechanisms, however. As a result, the authors depend on simulations to validate the natural balancing effect during soft switching. Lastly, a general method of loss measurement is presented. Results show that the converter losses are reduced by at least 30%.  相似文献   

18.
In this paper, an indirect field-oriented control (FOC) induction motor (IM) drive with instantaneous current and torque control is presented. This proposed control scheme employs hysteresis current and torque controllers to regulate the stator currents. The torque controller is proposed to serve the current controller so that full advantage of the zero voltage vector can be taken to reduce the switching frequency of the inverter. As a result, the actual stator currents can follow the current references as closely as possible, and the current ripple and torque ripple can be greatly decreased compared with the conventional adaptive pulsewidth modulation control method. To verify the feasibility of the proposed scheme, computer simulations and experiment results demonstrate that the proposed method can obtain a high-performance IM drive system.  相似文献   

19.
Novel resonant pole inverter for brushless DC motor drive system   总被引:3,自引:0,他引:3  
The brushless dc motor (BDCM) has been widely used in industrial applications because of its low inertia, fast response, high power density, high reliability, and maintenance-free reputation. It is usually supplied by a hard-switching pulse width modulation inverter, which normally displays relative low efficiency since the power losses across the switching devices are high. In order to reduce the losses, many soft switching inverters have been designed. However, these inverters have such disadvantages as high device voltage stress, large dc link voltage ripple, discrete pulse modulation, and complex control scheme. This paper introduces a novel resonant pole inverter, which is unique to a BDCM drive system, and is easy to implement. The inverter possesses the advantages of low switching power loss, low inductor power loss, low device voltage stress, and simple control scheme. The operation principle of the inverter is analyzed. Simulation and experimental results are proposed to verify the theoretical analysis.  相似文献   

20.
This paper proposes a snubber circuit for a flying capacitor multilevel inverter and converter. It also explains the concept of constructing a snubber circuit for a multilevel inverter and converter. The proposed snubber circuit makes use of an Undeland snubber as a basic snubber unit, and thus can be regarded as a generalized Undeland snubber for a flying capacitor multilevel inverter and converter. It has such an advantage of Undeland snubber used in the two-level inverter. Compared with a conventional RLD/RCD snubber for multilevel inverter and converter, the proposed snubber keeps such good features as fewer number of components, reduction of voltage stress of main switching devices due to low overvoltage, and improved efficiency of system due to low snubber loss. In this paper, the proposed snubber is applied to a three-level flying capacitor inverter, and its features are in detail demonstrated by computer simulation and experimental result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号