首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A translucent alumina composite containing 1 vol% LaAl11O18, prepared by the hot isostatic pressing (HIP) method, displays both high translucency and high fracture toughness. Its total forward transmission at 600 nm is 75% (thickness 1 mm), and its bending strength and fracture toughness are estimated to be 574±15 MPa and 5.9±0.46 MPa·m0.5, respectively. Its high translucency is due to the similarity of refractive index between the additive phase (LaAl11O18) and the matrix (alumina).  相似文献   

2.
The mechanical behavior of reaction-sintered alumina: 30 vol% calcium hexaluminate (Al2O3:CaAl12O19,or A12O3: CA6) composites was evaluated using the indentation strength in bending technique. A composite in which the hexaluminate (CA6) phase possessed a platelike morphology showed more-pronounced R -curve behavior than a composite in which the CA6 phase consisted of equiaxed grains. Toughness curves derived from the indentation-strength data exhibited a "crossover," such that the platelet composite exhibited the lower toughness at small flaw sizes, but the higher toughness at large flaw sizes. Incorporation of the platelet CA6 resulted in enhanced toughening, compared to single-phase alumina of comparable grain size, thus demonstrating the viability of the in-situ -toughening approach. A simple grain-pullout model was used to estimate the toughening increment due to bridging by the platelet grains; the value obtained was in good agreement with toughness curves derived from indentation-strength measurements. Finally, fabrication of trilayer specimens, whereby outer layers of equiaxed A12O3:CA6 composite were strongly bonded to the platelet A12O3:CA6 composite, demonstrated high strength over the range of tested flaw sizes.  相似文献   

3.
Synthesis of LaAl11O18 by the solid-state reaction of La2O3 and Al2O3 occurs in two stages, i.e. LaAlO3 forms immediately at 1450°C in air but LaAl11O18 formation is very slow and requires up to 141 days. First-order kinetics were observed and an activation energy of 118±4 kcal was calculated. Formation of LaAl11O18 depends on external O2-gas partial pressure. In an N2-gas atmosphere, the very slow formation of LaAl11O18, observed in air, is slowed even further. Possible mechanisms are also discussed.  相似文献   

4.
High-quality alumina ceramics were fabricated by a hot pressing with MgO and SiO2 as additives using α-Al2O3-seeded nanocrystalline γ-Al2O3 powders as the raw material. Densification behavior, microstructure evolution, and mechanical properties of alumina were investigated from 1250°C to 1450°C. The seeded γ-Al2O3 sintered to 98% relative density at 1300°C. Obvious grain growth was observed at 1400°C and plate-like grains formed at 1450°C. For the 1350°C hot-pressed alumina ceramics, the grain boundary regions were generally clean. Spinel and mullite formed in the triple-grain junction regions. The bending strength and fracture toughness were 565 MPa and 4.5 MPa·m1/2, respectively. For the 1300°C sintered alumina ceramics, the corresponding values were 492 MPa and 4.9 MPa·m1/2.  相似文献   

5.
A phase diagram of the system A12O3-A14C3 is proposed. Two intermediate oxycarbides, A14O4C and A12OC, were established. Eutectic melting between alumina and A14O4C occurred at 1840° C. No other low melting was observed. The alumina phase was not corundum but was similar to delta-alumina. Because of the high reactivity of aluminum carbide and all the intermediate compounds with moisture and oxygen, use of refractories based on the system A12O3-A14C3 must be limited to applications where these agents are excluded. The behavior of high-alumina refractories in the presence of carbon is explained.  相似文献   

6.
Significant increases in the critical fracture toughness (K IC ) over that of alumina are obtained by the stress-induced phase transformation in partially stabilized ZrO2 particles which are dispersed in alumina. More importantly, improved slow crack growth resistance is observed in the alumina ceramics containing partially stabilized ZrO2 particles when the stress-induced phase transformation occurs. Thus, increasing the contribution of the ZrO2 phase transformation by tailoring the Y2O3 stabilizer content not only increases the critical fracture toughness (KIC) but also the K Ia to initiate slow crack growth. For example, crack velocities ( v )≥10–9 m/s are obtained only at K Ia≥5 MPa.m1/2 in transformation-toughened ( K IC=8.5 MPa.m1/2) composites vs K Ia≥2.7 MPa.m1/2 for comparable velocities in composites where the transformation does not occur ( K IC=4.5 MPa.m1/2). This behavior is a result of crack-tip shielding by the dissipation of strain energy in the transformation zone surrounding the crack. The stress corrosion parameter n is lower and A greater in these fine-grained composite materials than in fine-grained aluminas. This is a result of the residual tensile stresses associated with larger (≥1 μm) monoclinic ZrO2 particles which reside along the intergranular crack path.  相似文献   

7.
Lubricated rolling wear studies of SiC-whisker (SiCw) reinforced A12O3 composites and monolithic A12O3 against M2 tool steel were conducted using a cylinder-on-cylinder apparatus. The composites wore considerably less than A12O3. The wear of the tool steel against the composites was also considerably less than against A12O3. Microfracture occurred on a smaller scale in the composites than in the Al2O3. This was attributed to the differences in microstruc-ture and fracture toughness. The worn surfaces of the steel and the composites were polished, possibly due to fine, hard wear debris circulating with the lubricant to the contact area.  相似文献   

8.
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2O3)-Al2O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2O3)/40 wt% Al2O3 exhibited an extremely high strength, 1000 MPa, at 1000°C.  相似文献   

9.
The effects of Ni3Al and Al2O3 additions on the mechanical properties of hydroxyapatite (HAp) were investigated. The addition of Ni3Al particles increased the strength as well as the fracture toughness of HAp. However, the improvements in the properties were limited because of the formation of microcracks around the metal particles. The microcracks were formed because of the large difference in the coefficients of thermal expansion between HAp and Ni3Al, and because of the relatively large size of Ni3Al particles (∼20 µm). The addition of submicrometer Al2O3 powder was also effective in increasing the mechanical properties. The flexural strength and the fracture toughness were increased from about 100 MPa and 0.7 MPam1/2, respectively, to 200 MPa and 1.5 MPam1/2 by the addition of 20 vol% Al2O3. When Ni3Al and Al2O3 were added together, the fracture toughness was further increased to 2.3 MPam1/2. This increase in the fracture toughness was attributed to the synergistic effect of matrix strengthening and crack interactions with the metal particles.  相似文献   

10.
Strength and fracture toughness results are presented for ZrO2 single crystals stabilized with Y2O3. The crystals (2 cm in diameter by 5 cm long) were prepared by skull melting. The partially stabilized compositions with 4 to 6 wt% Y2O3 showed a dramatic improvement in mechanical properties over the fully stabilized samples containing 20 wt% Y2O3, i.e. a strength exceeding 1000 MPa and a fracture toughness of 8 Mpa,.m 1/2 were achieved compared to 200 MPa and 2 Mpa.m1/2, respectively, for fully stabilized ZrO2 single crystals.  相似文献   

11.
Liquidus equilibrium relations for the air isobaric section of the system Y2O3–Fe2O3–FeO–Al2O3 are presented. A Complete solid-solution series is found between yttrium iron garnet and yttrium aluminum garnet as well as extensive solid solutions in the spinel, hematite, orthoferrite, and corundum phases. Minimum melting temperatures are raised progressively with the addition of alumina from 1469°C in the system Y–Fe–O to a quaternary isobaric peritectic at 1547°C and composition Y 0.22 Fe 1.08 Al 0.70 O 2.83* Liquidus temperatures increase rapidly with alumina substitutions beyond this point. The thermal stability of the garnet phase is increased with alumina substitution to the extent that above composition Y 0.75 Fe 0.65 Al 0.60 O 3 garnet melts directly to oxide liquid without the intrusion of the orthoferrite phase. Garnet solid solutions between Y 0.75 Fe 1.25 O 3 and Y 0.75 Fe 0.32- Al 0.93 O 3 can be crystallized from oxide liquids at minimum temperatures ranging from 1469° to 1547°C, respectively. During equilibrium crystallization of the garnet phase, large changes in composition occur through reaction with the liquid. Unless care is taken to minimize temperature fluctuations and unless growth proceeds very slowly, the crystals may show extensive compositional variation from core to exterior.  相似文献   

12.
Gradient, porous alumina ceramics were prepared with the characteristics of microsized tabular α-Al2O3 grains grown on a surface with a fine interlocking feature. The samples were formed by spin-coating diphasic aluminosilicate sol on porous alumina substrates. The sol consisted of nano-sized pseudo-boehmite (AlOOH) and hydrolyzed tetraethyl orthosilicate [Si(OC2H5)4]. After drying and sintering at 1150°–1450°C, the crystallographic and chemical properties of the porous structures were investigated by analytical electron microscopy. The results show that the formation of tabular α-Al2O3 grains is controlled by the dissolution of fine Al2O3 in the diphasic material at the interface. The nucleation and growth of tabular α-Al2O3 grains proceeds heterogeneously at the Al2O3/glass interface by ripening nano-sized Al2O3 particles.  相似文献   

13.
Tentative phase relations in the binary system BnOa-A12O3 are presented as a prerequisite to the understanding of the system Li2O-B2O3-Al2O3. Two binary compounds, 2A12O3.B2O3 and 9A12O3.-2B2O3, melted incongruently at 1030° f 7°C and about 144°C, respectively. Two ternary compounds were isolated, 2Li2O.A12O3.B2O3 and 2Li2O. 2AI2O3. 3B203. The 2:1:1 compound gave a melting reaction by differential thermal analysis at 870°± 20° C, but the exact nature of the melting behavior was not determined. The 2:2:-3 compound melted at 790°± 20° C to LizO.-5Al2O3 and liquid. X-ray diffraction data for the compounds are presented and compatibility triangles are shown.  相似文献   

14.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

15.
The fracture toughness of Al2O3 is considerably increased by the incorporation of fine monoclinic ZrO2 particles. Hot-pressed composites containing 15 vol % ZrO2 yield Klcvalues of ∼ 10 MN/m3/2, twice that of the A12O3 matrix. It is hypothesized that this increase results from a high density of small matrix microcracks absorbing energy by slow propagation. The microcracks are formed by the expansion of ZrO2during the tetragonal → monoclinic transformation. Since extremely high tensile stresses develop in the matrix, very small ZrO2 particles can act as crack formers, thus limiting the critical flaw size to small values.  相似文献   

16.
The compatibility of Al2O3 and LaPO4 at temperatures up to 1600°C is examined. Provided the ratio of La to P was close to 1:1, no reactions were observed after 200 h at 1600°C. Moreover, the Al2O3/LaPO4 interface remained sufficiently weakly bonded to cause deflection of cracks, as reported previously. In the presence of excess P or La, reactions occurred as expected, forming AlPO4 in the case of excess P, and LaAlO3 and LaAl11O18 in the case of excess La.  相似文献   

17.
A procedure for the formation of A12O3 coatings as diffusion barriers between ductile reinforcements (e.g., Nb and Ta) and intermetallic matrices (e.g., MoSi2 and NiAl) is described. The coating technique involved sol-gel processing of alumina -forming sols with the addition of submicrometer-sized A12O3 particles. Cracking in the coatings, a typical shortcoming of alumina sol-gel coating, was overcome by the addition of the fine particles into the sols. The surface charge of the A12O3 particles was adjusted to be the same as the AIO(OH) colloids in the sols and electrophoresis was used to codeposit A12O3 and AIO(OH) onto the surfaces of the reinforcements. The alumina gel derived from the sols acted as binder for the alumina particles, while the particles reduced the shrinkage of the sol-gel coatings and promoted the formation of dense coatings. The thickness of the coatings could be easily controlled without cracking and the effectiveness of the coatings as diffusion barriers was improved substantially.  相似文献   

18.
Composites of Al2O3 and Y2O3 partially-stabilized ZrO2 were isostatically hot-pressed using submicrometer powders as the starting material. The addition of Al2O3 resulted in a large increase in bending strength. The average bending strength for a composite containing 20 wt% Al2O3 was 2400 MPa, and its fracture toughness was 17 MN·w−3/2  相似文献   

19.
The reaction sintering of equimolar mixtures of ZnO and A12O3 powders was investigated as a function of primary processing parameters such as the temperature, heating rate, green density, and particle size. The powder mixtures were prepared by two different methods. In one method, the ZnO and A12O3 powders were ball-milled. In the other method, the ZnO powder was chemically precipitated onto the A12O3 particles dispersed in a solution of zinc chloride. The sintering characteristics of the compacted powders prepared by each method were compared with those for a prereacted, single-phase powder of zinc aluminate, ZnAl2O4. The chemical reaction between ZnO and A12O3 occurred prior to densification of the powder compact and was accompanied by fairly large expansion. The mixing procedure had a significant effect on the densification rate during reaction sintering. The densification rate of the compact formed from the ball-milled powder was strongly inhibited compared to that for the single-phase ZnAl2O4 powder. However, the densification rate of the compact formed from the chemically precipitated mixture was almost identical to that for the ZnAl2O4 powder. The difference in sintering between the ball-milled mixture and the chemically precipitated mixture is interpreted in terms of differences in the microstructural uniformity of the initial powder compacts resulting from the different preparation procedures.  相似文献   

20.
Aqueous mixtures of zirconium acetate and aluminum nitrate were pyrolyzed and crystallized to form a metastable solid solution, Zr1- x Al x O2− x /2 ( x < 0.57). The initial, metastable phase partitions at higher temperatures to form two metastable phases, viz., t −ZrO2+γ-Al2O3 with a nano-scale microstructure. The microstructural observations associated with the γ- →α-Al2O3 phase transformation in the t -ZrO2 matrix are reported for compositions containing 10, 20, and 40 mol% A12O3. During this phase transformation, the α-Al2O3 grains take the form of a colony of irregular, platelike grains, all with a common crystallographic orientation. The plates contain ZrO2 inclusions and are separated by ZrO2 grains. The volume fraction of A12O3 and the heat treatment conditions influence the final microstructure. At lower volume fractions of A12O3, the colonies coarsen to single, irregular plates, surrounded by polycrystalline ZrO2. Interpenetrating microstructures produced at high volume fractions of A12O3 exhibit very little grain growth for periods up to 24 h at 1400°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号