共查询到19条相似文献,搜索用时 98 毫秒
1.
基于量子计算的并行性、进化计算简单、通用性好等优点,采用量子编码构造进化算法的染色体种群,再将二者引入到核聚类中来,提出了一种基于量子进化规划的核聚类算法.该算法充分利用了量子态的叠加性以及量子比特的概率表示,能够表示出许多可能的线性叠加状态,具有更好的种群多样性,因此将其用于解决核聚类算法中目标函数的优化问题,可以有效克服传统进化算法收敛速度慢以及早熟等问题.对Brodatz纹理图像及SAR图像进行分割,仿真实验结果表明该算法可以较好地改善图像分割效果. 相似文献
2.
对噪声图像提出了一种改进的模糊聚类分割算法。因为模糊C均值聚类(FCM)算法具有对噪声数据敏感的缺点,该算法通过提升意义更趋明晰的模糊隶属度来改变模糊聚类中的目标函数,即通过在标准的FCM算法中使用到类的Voronoi cell的距离来取代到类的原型的欧氏距离,从而增强了聚类结果的鲁棒性。实验结果表明,改进的算法较之于FCM对于噪声图像的分割有更好的鲁棒性。 相似文献
3.
针对现有鲁棒图形模糊聚类算法难以满足强噪声干扰下大幅面图像快速分割的需要,提出一种快速鲁棒核空间图形模糊聚类分割算法。该算法将欧氏空间样本通过核函数映射至高维空间;采用待分割图像中像素邻域的灰度和空间等信息构建线性加权滤波图像,对其进行鲁棒核空间图形模糊聚类;并引入当前聚类像素与其邻域像素均值所对应的二维直方图信息,获得鲁棒核空间图形模糊聚类快速迭代表达式。对大幅面图像添加高斯和椒盐噪声进行分割测试,实验结果表明:本文算法相比基于图形模糊聚类等分割算法的分割性能、抗噪鲁棒性和实时性有了显著提高。 相似文献
4.
5.
传统的聚类图像分割方法一般仅仅利用图像中的灰度信息。为了更好地利用图像中的区域和边缘信息,提出一种基于分水岭过分割的多目标模糊核聚类图像分割算法。该算法采用分水岭算法获得图像的过分割区域,采用多目标模糊核聚类算法对区域代表点和分水岭上的像素进行聚类。根据聚类结果将图像中的像素进行标记,得到最终的分割图像。实验结果表明,由于利用了图像区域信息,使得目标能够比较完整地从背景中分离出来。 相似文献
6.
7.
通过基于粗糙集相容关系的划分,介绍了一种新的图像聚类分割方法,首先,以不同聚类数情况下FCM的分割结果为依据构建信息表,在合并重复行后,图像被分成多个对象区域,然后,通过值约简获得各属性权值并以此为依据,计算各对象之间的差异度,进而通过差异度定义 相容关系,最后由 相容关系对对象论域进行划分,完成图像分割。该方法在人工生成图像和大脑MRI图像的分割中得到验证,实验结果表明,本文方法比FCM方法具有更好的分割准确性,对模糊边界区域的分割效果较好。 相似文献
8.
9.
基于小波图像融合算法和改进FCM聚类的MR脑部图像分割算法 总被引:1,自引:0,他引:1
针对很多基于模糊C均值(FCM)的图像分割算法存在对噪声敏感和分割轮廓不清晰等问题,提出一种基于小波变换图像融合算法和FCM聚类算法的MR医学图像分割算法。在图像分割系统的第一阶段,利用Haar小波多分辨率特性保持像素间的空间信息;第二阶段,利用小波图像融合算法对得到的多分辨率图像和原始图像进行融合,进而增强被处理图像的清晰度并降低噪声;第三阶段,利用改进型FCM技术对所处理的图像进行分割。在BrainWeb数据集上进行实验,与现有相关算法相比,提出的算法具有较高的分割精度,且对噪声的鲁棒性比较强,处理时间也没有明显增加。 相似文献
10.
K-均值聚类是一种被广泛应用的方法。本文提出了基于K-均值聚类的改进算法,并应用于图像分割。针对K-均值聚类算法对离群点的反应过强的缺点,通过替换中心点,比较代价函数,来达到改进划分结果的目的。实验结果表明,该方法能有效改善聚类中心,提高分类精度和准确性。 相似文献
11.
如何对彩色图像中的目标进行有效的分割是计算机视觉和图像分析的重点和难点,文中提出不断对彩色图像采用最优阈值化进行一次粗分割提取最大目标区域,再利用改进的K-均值算法对提取目标子区域进行精确分割。实验结果表明该方法对彩色图像能够有效地提取目标物体,并对噪声图像具有一定的鲁棒性。 相似文献
12.
基于模糊C均值聚类的医学图像分割研究 总被引:1,自引:0,他引:1
模糊C均值聚类算法(FCM)在硬C均值聚类的基础上有效地解决了医学图像分割中存在的模糊情况,通过建立表示图像中像素点与聚类中心加权相似度的目标函数,采用迭代优化的方法求解目标函数的极小值来确定最佳聚类。针对FCM算法中存在的对大样本数据分割速度慢、结果易受初始值影响、对噪声敏感、难以适应多种数据分布等缺陷,涌现出了大量的改进算法。对其中的部分改进算法进行综述,主要介绍快速FCM算法、基于初始值选取的FCM算法、基于空间邻域信息的FCM算法以及基于核函数的FCM算法等,并对其优缺点进行概要的总结和介绍。指出该算法进一步的研究方向。 相似文献
13.
带宽自适应MeanShift图像分割算法 总被引:1,自引:0,他引:1
MeanShift是目前为止特征空间分析的最好方法之一,但其分割结果受带宽参数的影响。图像粗糙度是与视觉感受相关的图像纹理特征,对图像纹理的描述能力很强。图像像素的平均偏移量也体现了图像像素的总体离散情况。通过对高斯核函数的创建以及图像粗糙度的描述,创新性地给出了MeanShift的窗口尺寸选择方法以及图像像素平均偏移的计算,仿真结果表明,该算法对不同类型的图像,均能得到令人满意的效果。 相似文献
14.
目的 为了更有效地提高中智模糊C-均值聚类对非凸不规则数据的聚类性能和噪声污染图像的分割效果,提出了核空间中智模糊均值聚类算法。方法 引入核函数概念。利用满足Mercer条件的非线性问题,用非线性变换把低维空间线性不可分的输入模式空间映射到一个先行可分的高维特征空间进行中智模糊聚类分割。结果 通过对大量图像添加不同的加性和乘性噪声进行分割测试获得的核空间中智模糊聚类算法提高了现有算法的对含噪声聚类的鲁棒性和分类性能。峰值信噪比至少提高0.8 dB。结论 本文算法具有显著的分割效果和良好的鲁棒性,并适应于医学,遥感图像处理需要。 相似文献
15.
FCM用于彩色图像分割存在聚类数目需要事先确定、计算速度慢的问题,为此,提出一种快速的模糊C均值聚类方法(FFCM)。首先,对原始彩色图像进行基于梯度图的分水岭变换,从而把原始彩色图像数据分成一些具有色彩一致性的子集;然后,利用这些子集的大小和中心点进行模糊聚类。由于FFCM聚类样本数量显著减小,因此可以大幅提高模糊C均值聚类算法的计算速度,进而可以采用聚类有效性指标确定聚类数目。实验表明,这种方法不需要事先确定聚类数目,在聚类有效性能不变的前提下,可以使模糊聚类的速度得到明显提高,实现了彩色图像的快速分割。 相似文献
16.
基于K-均值聚类算法的图像区域分割方法 总被引:7,自引:0,他引:7
提出了一种自动确定聚类数目的K-均值聚类算法,并基于这种算法介绍了一种彩色图像区域分割方法。这种方法首先选择合适的彩色空间,抽取图像的像素点颜色、纹理及位置等特征,形成特征向量空间;然后,在此特征空间中,运用提出的方法进行聚类和图像区域分割;最后,抽取图像区域的特征。对提出的方法进行了详细的介绍,给出实验结果分析,并与相类似的方法进行了比较实验。实验结果表明,提出的图像区域分割方法具有分割速度快、效果好等特点,适合于基于图像区域检索系统,具有较强的实用价值。 相似文献
17.
目的 传统模糊C-均值聚类应用于图像分割仅考虑像素本身的聚类问题,无法克服噪声干扰对图像分割结果的影响,不利于受到噪声干扰的工业图像、医学影像和高分遥感影像等进行目标提取、识别和解译。嵌入像素空间邻域信息或局部信息的鲁棒模糊C-均值聚类分割算法是近年来图像分割理论研究中的热点课题。为此,针对现有的鲁棒核空间模糊聚类算法非常耗时且抑制噪声能力弱、不适合强噪声干扰下大幅面图像快速分割等问题,提出一种快速鲁棒核空间模糊聚类分割算法。方法 利用待分割图像中像素邻域的灰度信息和空间位置等信息构建线性加权滤波图像,对其进行鲁棒核空间模糊聚类。为了进一步提高算法实时性,引入当前聚类像素与其邻域像素均值所对应的2维直方图信息,构造一种基于2维直方图的鲁棒核空间模糊聚类快速分割最优化数学模型,采用拉格朗日乘子法获得图像分割的像素聚类迭代表达式。结果 对大幅面图像添加一定强度的高斯、椒盐以及混合噪声,以及未加噪标准图像的分割测试结果表明,本文算法比基于邻域空间约束的核模糊C-均值聚类等算法的峰值信噪比至少提高1.5 dB,误分率降低约5%,聚类性能评价的划分系数提高约10%,运行速度比核模糊C-均值聚类和基于邻域空间约束的鲁棒核模糊C-均值聚类算法至少提高30%,与1维直方图核空间模糊C-均值聚类算法具有相当的时间开销,所得分割结果具有较好的主观视觉效果。结论 通过理论分析和实验验证,本文算法相比现有空间邻域信息约束的鲁棒核空间模糊聚类等算法具有更强的抗噪鲁棒性、更优的分割性能和实时性,对大幅面遥感、医学等影像快速解译具有积极的促进作用,能更好地满足实时性要求较高场合的图像分割需要。 相似文献
18.
19.
基于混沌粒子群和模糊聚类的图像分割算法* 总被引:1,自引:2,他引:1
模糊C-均值聚类算法(FCM)是一种结合模糊集合概念和无监督聚类的图像分割技术,适合灰度图像中存在着模糊和不确定的特点;但该算法受初始聚类中心和隶属度矩阵的影响,易陷入局部极小.利用混沌非线性动力学具有遍历性、随机性等特点,结合粒子群的寻优特性,提出了一种基于混沌粒子群模糊C-均值聚类(CPSO-FCM)的图像分割算法.实验证明,该方法不仅具有防止粒子因停顿而收敛到局部极值的能力,而且具有更快的收敛速度和更高的分割精度. 相似文献