共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
蚁群优化算法是一种能应用于求解旅行商问题(Traveling Salesman Problem,TSP)的智能算法,但蚁群算法在求解TSP路径规划问题中存在收敛速度慢、易陷入局部最优解问题,而将蚂蚁算法的蚁群分组,能增加全局搜索能力,提高求解路径规划性能。通过分析蚁群分组大小与蚁群算法性能的关系,并提出了一种自适应分组蚁群算法,采用一种随迭代分组数减少策略方法,并将其应用于对TSP路径规划问题求解。通过实验结果对比表明,自适应分组蚁群算法在收敛速度和搜索质量方面都有了明显提高。 相似文献
3.
4.
动态自适应蚁群算法求解TSP问题 总被引:2,自引:0,他引:2
针对基本蚁群算法容易出现早熟和停滞现象的缺点,提出一种动态自适应蚁群算法,通过引入信息素的自适应调整策略,限制信息素范围以及动态增加信息素的局部更新方式,有效抑制收敛过程中的停滞现象,提高算法的搜索能力.该算法的性能在中国旅行商问题(China Traveling Salesman Problem,CTSP)和EilSO问题上得到验证. 相似文献
5.
6.
由于基本蚁群算法存在过早陷入局部最优、搜索速度慢的缺点,本文在分析产生这些缺点的基础上,对蚁群算法提出了一些改进措施。最后通过TSP仿真,表明改进算法不仅提高了算法的速度,而且提高了解得质量. 相似文献
7.
针对基本蚁群算法(AS)存在的不足,提出了一种同时包含竞争机制和多种寻优规则的混合蚁群算法(MCAS)。通过对TSP问题的仿真实验,表明MCAS算法选用适当的参数组合后,可以在不增加算法复杂度的前提下表现出比AS算法更佳的全局求解能力和鲁棒性。 相似文献
8.
针对基本蚁群算法在求解能力方面的不足,提出一种基于群体分类的自适应蚁群算法.该算法在智能蚁群的基础上引入随机蚁群以便扩大搜索空间,不同蚁群实行各自不同的搜索前进策略和信息更新机制,并可通过调节随机蚁群与智能蚁群的比例来控制收敛速度.多个旅行商问题的仿真实验证明,相比ACS、MMAX算法,该算法的求解能力得到了改进. 相似文献
9.
基于信息熵调整的自适应蚁群算法 总被引:1,自引:2,他引:1
针对基本蚁群算法在求解大规模旅行商问题进易导致搜索时间过长或陷入停滞的问题,提出一种基于信息熵调整的自适应蚁群算法.该算法通过优化过程中种群的信息熵来衡量演化的程度,自适应地调整路径选择策略和信息素更新策略.信息熵的计算以某条路径边上的信息素占总信息素量的比例为基础.对大规模城市数旅行商问题进行实验,实验结果表明,提出的基于信息熵调整的自适应蚁群算法能获得比基本蚁群算法更好的解,并且增加了算法的稳定性. 相似文献
10.
一种改进的自适应蚁群算法求解TSP问题 总被引:2,自引:1,他引:2
文章提出了一种改进的蚁群算法,其核心是限制单步路径上的蚂蚁数目,当该路径上的信息素达到一定浓度时,人为的迫使蚂蚁改换路径,从而更好的全局寻优,避免算法陷入局部极优,并使用2-Opt方法对路径进行优化。对旅行商问题(TSP)的实验结果表明:新算法的优化结果和效率都优于基本蚁群算法。 相似文献
11.
提出一种基于异类蚁群的双种群蚁群(Dual Population Ant Colony Algorithm Based on Heterogeneous Ant Colonies,DPACBH)算法,算法将两种信息素更新机制不同的蚁群分别独立进行进化求解,并定期交换优良解和信息来改善解的多样性,增强跳出局部最优的能力,使算法更容易收敛到全局最优解。以TSP(Travel Salesman Problem)问题为例所进行的计算表明,该算法比基本双种群蚁群算法具有更好的收敛速度和准确性。 相似文献
12.
基于混合行为蚁群算法的研究 总被引:17,自引:2,他引:17
为在加快算法收敛速度的同时又能避免停滞现象,提出一种基于混合行为的蚁群算法.首先就蚂蚁行为对算法性能的影响进行了分析,在此基础上提出了该算法的模型;然后定义了蚂蚁行为,并为该算法设计了4种具体的蚂蚁行为,根据模型实现了该算法.实验结果表明,该算法在性能上远优于蚂蚁系统. 相似文献
13.
为克服现有蚁群算法运算过程中易出现停滞现象、收敛速度慢等缺点,提出了一种基于模拟退火策略的多道逆向蚁群算法。通过向原始蚁群中引入逆向蚂蚁,并结合模拟退火思想确定蚁群中逆向蚂蚁的数目,来提高算法全局寻优能力。在算法执行过程中一组蚂蚁分成几群并行运算,通过交换策略,有效地利用了当前最优解,提高了算法收敛速度。将该算法应用于旅行商问题的求解,仿真实验结果表明该算法的全局寻优能力和收敛速度都得到了很大改善。 相似文献
14.
蚁群算法是模仿蚂蚁觅食行为的一种新的仿生学智能优化算法。针对其收敛速度慢和易陷入局部最优的不足,将细菌觅食算法和蚁群算法相结合,提出一种细菌觅食 蚁群算法。在蚁群算法迭代过程中,引入细菌觅食算法的复制操作,以加快算法的收敛速度;引入细菌觅食算法的趋向操作,以增强算法的全局搜索能力。通过经典的旅行商问题和函数优化问题测试表明,细菌觅食 蚁群算法在寻优能力、可靠性、收敛效率和稳定性方面均优于基本蚁群算法及两种改进蚁群算法。 相似文献
15.
为了解决蚁群算法易早熟于局部最优及收敛速度慢的问题,采用云模型理论来合理调控蚁群算法的随机性程度,分别提出针对蚁群算法参数、云模型参数以及较优路径判定的自适应调整策略,同时提出信息素分布状态的评价算法。针对多个TSP问题进行仿真实验,结果验证了提出的算法的高效性与稳定性。 相似文献
16.
17.
18.
提出一种求解TSP的算法,采用“问题无关的进化算法与问题相关的局部搜索相结合”的策略。采用基于云模型的蚁群算法来产生足够好的解;改进传统的LK算法,新加入5种搜索删除集与添加集元素的准则,以此细化搜索。将该算法用于求解TSPLIB中不同类型、城市数从48到33 810内变化的TSP,比较该学派与其他学派算法的偏离率与运行时间,结果均显示该算法更优,有效求解了TSPLIB中的非对称TSP、哈密尔顿圈问题。 相似文献