首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 70 毫秒
1.
谢福鼎  王赫楠  张永 《计算机工程》2011,37(22):250-251
提出一种新的时间序列线性拟合方法.通过判断连接相邻点所成线段的斜率变化,选择时间序列中的转折点,将这些点与时间序列的极值点合并作为关键点,利用这些关键点组成的序列拟合原时间序列.该线性拟合方法在剔除噪声的同时,能更精确地定位时间序列中的关键点.实验结果表明,与已有方法相比,该方法能近似表示原时问序列,且拟合后的时间序列...  相似文献   

2.
基于三角形中线的数据序列线性拟合算法   总被引:1,自引:0,他引:1       下载免费PDF全文
从石油测井数据解释的实际应用需求出发,提出一种新的基于三角形中线的数据序列分段算法。在扫描数据的过程中依次计算 3个连续数据形成的三角形中线长度,根据自定义的中线长度阈值选择反映序列趋势变化的关键转折点,实现数据序列的线性拟合。实验结果表明该算法具有良好的拟合质量和较高的效率。  相似文献   

3.
时间序列数据具有规模大、维度高等特点,直接在原始序列上进行数据挖掘,其计算复杂度高且易受噪声影响,因此对原始时间序列进行预处理是必不可少的,而常用的线性表示方法大多存在对分段点的筛选准确度不高的问题。基于时间序列的变化特征,提出了一种基于时间序列关键点的线性表示方法。该方法综合考虑了时间跨度和振幅变化,能高效提取时间序列中的关键点,并防止过度除噪,实现简单。实验表明,该方法对不同领域的数据具有良好的普适性。  相似文献   

4.
一种基于信息熵的时间序列分段线性表示方法   总被引:1,自引:0,他引:1  
针对部分时间序列具有高维、大数据量及数据更新速度较快的特点, 导致在原始时间序列上难以进行数据挖掘的问题, 提出一种基于信息熵的时间序列分段线性表示方法——PLR_IE。该算法利用信息熵作为评判重要点数量的性能指标, 从序列中提取重要分段点的数量分布情况, 利用重要点组成的序列重新拟合原始时间序列, 为下一步数据挖掘提供基础。实验结果表明, 该方法能高效地提取出序列主要特征、拟合原始序列。  相似文献   

5.
为了解决现有时间序列的分段线性表示方法忽略时间序列的全局特征, 局限于局部最优的问题, 本文通过研究时间序列的趋势, 发现了时间序列的波动特性, 将时间序列的趋势变化分为上下两层, 在上下两层分别剔除趋势保持点. 实验结果表明, 该分段方法时间复杂度低、且易于实现, 在保持时间序列趋势特征的基础上, 得到的拟合误差更小...  相似文献   

6.
基于斜率提取边缘点的时间序列分段线性表示方法   总被引:7,自引:0,他引:7  
本文引入解析几何中的斜率,提出了一种新颖的基于斜率提取边缘点的时间序列分段线性表示方法SEEP。对于斜率变化范围比较集中的时间序列,SEEP表示方法有着非常好的效果,与以往的分段线性表示方法相比,SEEP表示方法与原始时间序列之间的拟合误差更小,而且要小很多;对于斜率变化范围比较大的时间序列,SEEP表示方法与原始时间序列之间的拟合误差,和以往的分段线性表示方法相比,也相差不大,并且SEEP表示方法计算简单,易于实现。算法的时间复杂度仅为O(n),  相似文献   

7.
基于时间序列趋势转折点的分段线性表示*   总被引:8,自引:2,他引:8  
在充分利用时间序列时变特征的基础上,以有效地提取序列中的趋势和压缩原始数据为目标,提出了基于时间序列趋势转折点的分段线性表示方法。该方法在有效地提取序列中的趋势和压缩原始数据的同时,能够随着时间序列长度的增长对序列进行划分,具有高效、实现方法简便、效果直观的优点,对于不同领域的数据适应性良好。  相似文献   

8.
基于时态边缘算子的时间序列分段线性表示   总被引:1,自引:1,他引:1  
时间序列的分段线性表示算法通常基于单一的启发式规则,难以适用于不同数据特征的时间序列。借鉴了边缘算子的思想来提取时间序列的边缘点,提出了一种基于时态边缘算子的时间序列分段线性表示算法。在来自不同领域的公开数据集上进行的实验结果表明:与两种主要的分段线性表示算法相比,该算法具有更好的拟合性能,并且更为稳定,能够适用于各类不同数据特征的时间序列。  相似文献   

9.
基于函数的时间序列分段线性表示方法   总被引:1,自引:0,他引:1  
谢福鼎  王赫楠  张永  孙岩 《计算机科学》2011,38(11):153-155,160
考虑到时间序列的时间特性对不同区段的影响以及时间序列数据动态增长的实际情况,在RPAA ( Reversed Piecewise Aggregate Approximation)和PAA(Piecewise Aggregate Approximation)方法的基础上,提出了一种新的时间序列分段线性表示方法FPAA(Founction Piecewise Aggregate Approximation)。FPAA方法通过定义函数影响因子,克服了RPAA和PAA方法的不足。该方法具有线性时间复杂度,满足下界定理,并且支持时间序列的在线划分。实验表明,与PAA方法和RPAA方法相比,所提出的方法可以较有效地进行时间序列的在线查询。  相似文献   

10.
《软件工程师》2016,(8):1-8
随着信息化的发展,大量的数据被产生。在新产生的数据中,时间序列数据是一种重要的数据类型,而对该类数据进行高效的查询处理成为了当前研究的热点。本文针对线性散列的索引机制,提出了一种新型的时间序列的查询处理方法,以降低索引创建时间和提高查询效率。实验证明,本方法中的线性散列索引,在创建时的时间耗费有所下降。在查询阶段采用K近邻与下界距离相结合的方法,能有效地过滤掉多余的结果,提高了时间序列查询处理的效率和精确度。  相似文献   

11.
为研究降雨天气中降雨量和相关气象要素的关系,找出降雨前后相关气象要素的变化规律,提出了多维时间序列数据挖掘模型.该模型首先对气象要素时间序列进行维度选择预处理,剔除不相关及冗余维度,然后运用提出的极值斜率分段线性拟合法对时间序列进行分段、数据压缩及特征值提取,最后使用k-means聚类算法对处理后的多维序列进行符号化,利用规则提取得到降雨天气模型.实验结果表明了该模型具有较好的实用价值.  相似文献   

12.
基于重要点的时间序列线性分段算法能在较好地保留时间序列的全局特征的基础上达到较好的拟合精度。但传统的基于重要点的时间序列分段算法需要指定误差阈值等参数进行分段,这些参数与原始数据相关,用户不方便设定,而且效率和拟合效果有待于进一步提高。为了解决这一问题,提出一种基于时间序列重要点的分段算法——PLR_TSIP,该方法首先综合考虑到了整体拟合误差的大小和序列长度,接着针对优先级较高的分段进行预分段处理以期找到最优的分段;最后在分段时考虑到了分段中最大值点和最小值点的同异向关系,可以一次进行多个重要点的划分。通过多个数据集的实验分析对比,与传统的分段算法相比,减小了拟合误差,取得了更好的拟合效果;与其他重要点分段算法相比,在提高拟合效果的同时,较大地提高了分段效率。  相似文献   

13.
实际过程中采集到的时间序列数据通常是海量数据,在原时间序列数据上直接进行数据挖掘的效率通常是低下的,有时甚至不可行,因此就须将时间序列在更高的层次上进行表示。借鉴时间序列线性分段的基本思想,提出了一种自适应误差约束的分段线性表示方法,该方法在查找出时间序列特殊点的基础上,通过给定误差e进行调节,可以自动地产生拟合线段的数目。不仅可以压缩数据,去除噪声,还能得到时间序列的模式变化特征。与一般的分段线性表示相比,文中方法的拟合误差更小,适应能力更强。  相似文献   

14.
目前,时间序列的相似性大多是在原始序列上进行判断和比较的,原始序列维度较高,计算量大,不利于相似性比较。提出了新的关键点(转折点或极值点)算法,除利用常用的极值法求非单调序列的关键点外,还提出了求单调序列关键点的新算法,利用该算法可以压缩时间序列,降低维度,又能保持序列的轮廓。在关键点时间序列上提出了新的相似性判定算法,利用该算法可计算任意两序列的相似度,并且提高了相似性判定的鲁棒性,减少人为干预设置阈值带来的影响。实验结果表明,基于时间序列关键点的相似性算法能很好地判定任意两序列的相似性,减少了计算量,提高了鲁棒性及减少人为干扰,对时间序列数据挖掘中的聚类与预测有很好的帮助作用。  相似文献   

15.
A two-dimensional image model is formulated using a seasonal autoregressive time series. With appropriate use of initial conditions, the method of least squares is used to obtain estimates of the model parameters. The model is then used to regenerate the original image. Results obtained indicate this method could be used to code textures for low bit rates or be used in an application of generating compressed background scenes. A differential pulse code modulation (DPCM) scheme is also demonstrated as a means of archival storage of images along with a new quantization technique for DPCM. This quantization technique is compared with standard quantization methods.  相似文献   

16.
针对时间序列传统静态聚类问题,提出了对时间序列进行动态聚类的方法。该方法首先提取时间序列的关键点集合,根据改进的FCM算法找到动态特征明显的时间序列,再利用提出的动态聚类算法确定此类时间序列在不同时间段的所属类别,在改进的FCM算法中采用兰氏距离可以使其对奇异值不敏感。实验结果反映出动态特征明显的时间序列类别随时间演化的特性,表明了方法的可行性和有效性。与已有算法相比,该方法揭示了时间序列的部分动态特征。该方法还可以运用于研究数据挖掘的其他问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号