首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the gear dynamic model relies on the analytical measurement of time varying gear mesh stiffness in the presence of a tooth fault. The variation in gear mesh stiffness reflects the severity of tooth damage. This paper proposes a cumulative reduction index (CRI) which uses a variable crack intersection angle to study the effect of different gear parameters on total time varying mesh stiffness. A linear elastic fracture mechanics based two dimensional FRANC (FRacture ANalysis Code) finite element computer program is used to simulate the crack propagation in a single tooth of spur gear at root level. A total potential energy model and variable crack intersection angle approach is adopted to calculate the percentage change in total mesh stiffness using simulated straight line and predicted crack trajectory information. A low contact ratio spur gear pair has been simulated and the effect of crack path on mesh stiffness has been studied under different gear parameters like pressure angle, fillet radius and backup ratio. The percentage reduction of total mesh stiffness for the simulated straight line and predicted crack path is quantified by CRI. The CRI helps in comparing the percentage variation in mesh stiffness for consecutive crack. From the result obtained, it is observed that the proposed method is able to reflect the effect of different gear parameters with increased deterioration level on total gear mesh stiffness values.  相似文献   

2.
The number of equations which relate the mesh parameters (number of nodes, number of elements etc.) to each other is smaller than the number of unknowns contained therein. These rules are only applicable when several parameters of a defined mesh are known, but are unsuitable for use in the particularly interesting field of mesh projection unless additional inter-relationships can be found. Such relationships are given for uniform meshes in which besides the characteristics of the element type the ‘solidity value’ of the structure plays an important role. The equations are derived for two-dimensional triangular and quadrilateral elements and also for three-dimensional tetrahedral and hexahedral elements. The fact that these relationships are also suitable for estimating the parameters of any non-uniform mesh, discloses a wide field of application in the management of storage and in the control of programs for automatic mesh generation.  相似文献   

3.
基于有限元程序LS-DYNA,在验证模型及参数可靠的基础上,对方孔网格型防爆网的防爆性能进行了三维数值模拟。通过计算冲击波超压减小率在防护面上的均值和方差,解决了防爆网防爆性能的量化标准问题。结果表明:防爆网可以有效减小爆炸对建筑的冲击,防爆效果与其和建筑之间的距离以及防爆网孔洞率、孔洞尺寸、厚度有关;适当增加防爆网与建筑之间的距离,可以获得良好的防爆效果;减小孔洞率或保持孔洞率不变的情况下减小孔洞尺寸,也可以提高防爆网的防爆性能;增加防爆网厚度可以有效减小爆炸对建筑的冲击作用,但也会使防爆的均匀性变差,因此通过增加防爆网厚度来提高其防爆性能时应兼顾考虑此两方面的问题。  相似文献   

4.
针对旋转整体式斯特林制冷机的回热器性能优化,讨论了回热器丝网填料选型的原则,分析了不同温区采用不同丝网参数的回热器模型,并利用REGEN软件对混合丝网模型进行了优化分析。通过实验数据对模拟优化的结果进行了分析和讨论,验证了混合丝网模型优化结果的正确性,为旋转整体式斯特林制冷机回热器性能优化提供依据。  相似文献   

5.
The efficiency of high contact ratio (HCR) gearing can be achieved by proper selection of gear geometry for increased load capacity and smoother operation despite of their high sliding velocities. The prediction of variation in mesh stiffness of HCR gearing is critical as the average number of teeth being in contact is high at a given time as compared to conventional low contact ratio (LCR) gearing. In this paper, linear elastic fracture mechanics (LEFM) based finite element method is used to perform the crack propagation path studies of HCR spur gear having tooth root crack for two gear parameters viz. backup ratio and pressure angle. A total potential energy model has been adopted to analytically estimate the mesh stiffness variation. The results depict the mesh stiffness reduction in the presence of the crack. The percentage change in mesh stiffness with increasing crack length is an important parameter in fault diagnosis of geared transmission. Higher the percentage change in mesh stiffness, easier to detect the fault. Two gear parameters viz. back-up ratio and pressure angle has been studied and the effect of crack length on mesh stiffness have been outlined. With the increase of deterioration level gears having lower back-up ratio fault can be detected at an early stage, similarly, chances for early fault detection is more for gears having higher pressure angle.  相似文献   

6.
In this study, criteria on the artificial compliance due to intrinsic cohesive zone models are presented. The approach is based on a micromechanical model for a collection of cohesive zone models embedded between each mesh of a finite element-type discretization. The overall elastic behaviour of this cohesive volumetric medium is obtained using homogenization techniques and is given in a closed-form as function of bulk properties of the relevant material and mesh parameters (the mesh type and size). Practical criteria are obtained for the calibration of the cohesive stiffnesses bounding the additional compliance inherent to intrinsic cohesive zone models by lower value. For isotropic planar discretizations (e.g. Delaunay mesh), a rigorous bound is derived whereas convenient estimates are given for non-isotropic discretizations (e.g. regular mesh).  相似文献   

7.
This work investigates the use of hierarchical mesh decomposition strategies for topology optimisation using bi‐directional evolutionary structural optimisation algorithm. The proposed method uses a dual mesh system that decouples the design variables from the finite element analysis mesh. The investigation focuses on previously unexplored areas of these techniques to investigate the effect of five meshing parameters on the analysis solving time (i.e. computational effort) and the analysis quality (i.e. solution optimality). The foreground mesh parameters, including adjacency ratio and minimum and maximum element size, were varied independently across solid and void domain regions. Within the topology optimisation, strategies for controlling the mesh parameters were investigated. The differing effects of these parameters on the efficiency and efficacy of the analysis and optimisation stages are discussed, and recommendations are made for parameter combinations. Some of the key findings were that increasing the adjacency ratio increased the efficiency only modestly – the largest effect was for the minimum and maximum element size parameters – and that the most dramatic reduction in solve time can be achieved by not setting the minimum element size too low, assuming mapping onto a background mesh with a minimum element size of 1. © 2016 The Authors. International Journal for Numerical Methods in Engineering Published by John Wiley & Sons, Ltd.  相似文献   

8.
Y.B. Tao 《低温学》2009,49(9):497-503
An anisotropic porous media model for mesh regenerator used in pulse tube refrigerator (PTR) is established. Formulas for permeability and Forchheimer coefficient are derived which include the effects of regenerator configuration and geometric parameters, oscillating flow, operating frequency, cryogenic temperature. Then, the fluid flow and heat transfer performances of mesh regenerator are numerically investigated under different mesh geometric parameters and material properties. The results indicate that the cooling power of the PTR increases with the increases of specific heat capacity and density of the regenerator mesh material, and decreases with the increases of penetration depth and thermal conductivity ratio (a). The cooling power at a = 0.1 is 0.5-2.0 W higher than that at a = 1. Optimizing the filling scale of different mesh configurations (such as 75% #200 twill and 25% #250 twill) and adopting multi segments regenerator with stainless steel meshes at the cold end can enhance the regenerator’s efficiency and achieve better heat transfer performance.  相似文献   

9.
The paper presents an automatic finite element remeshing system for quadrilateral elements consisting of modules for mesh generation, densification, smoothing and interpolation of field variables. The mesh generator takes into account the contour of the old mesh, eventual interference with dies and the plastic deformation of the material. An initial coarse mesh is created by utilizing a grid-based approach for creating well-shaped internal elements, in conjunction with a nodal connection approach based on constrained Delaunay triangulation, for linking with the boundary. Subsequent local mesh refinement is performed according to parameters depending on past, present and predicted future deformation related field variables; being, respectively, the strain gradient and strain rate distribution in relation with the velocity field, element size and quality. Smoothing is accomplished using an iterative Laplacian repositioning method. As illustrated in the presented examples this overall strategy ensures a robust and efficient remeshing scheme for finite element simulation of bulk metal-forming processes. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
The continuity and differentiability of object functions is a basic prerequisite for the application of gradient methods in optimization. However, for parameters defining the shape of an electromagnetic device, the finite element discretization in the field analysis introduces discontinuities into the object function which slow down the convergence rate. Additionally, depending on the geometric parametrizaiion employed, the optimization frequently yields shape contours that are impracticable for manufacturing purposes. This paper investigates the problems inherent in geometric parametrization and shows that the discontinuities in the object function are caused by changes in mesh topology as the geometric parameters vary; these changes inevitably follow from the use of free meshing algorithms. As a solution to these shortcomings a structural mapping technique is outlined that maps surface displacements onto the parameters of the finite element mesh and obtains the parameter dependent geometric variations without a change in mesh topology. This resulting geometric parametrization yields continuous object functions without artificial local minima and results in smooth surface contours of the optimized device. Using this new parametrization technique, design sensitivity analysis, is shown to be a reliable and essential part in the efficient application of gradient methods for shape optimization.  相似文献   

11.
孙衍宁  马辉  冯盟蛟  李占伟  王奇斌 《工程力学》2018,35(7):243-248,256
该文以变位直齿轮副的齿顶修形为研究对象,考虑齿轮啮合的非线性接触、修正基体刚度以及延长啮合的影响,建立了考虑齿顶修形的变位直齿轮副时变啮合刚度解析模型,并通过有限元方法验证了该模型的正确性;以对刚度进行快速傅里叶变换(FFT)得到的前五阶幅值之和最小为设计目标,获得了齿顶修形的最优参数范围,并通过有限元模型进行应力分析,反证了该范围的正确性。研究结果表明:基于啮合刚度FFT前5阶幅值之和最小的设计方法可以更为高效地计算并锁定最优修形参数的范围,通过有限元进行应力分析可进一步验证齿顶修形的最优参数;齿轮齿顶修形后,刚度谐波量和应力均明显减小,有助于降低齿轮系统的振动和噪声。研究结果可为变位直齿轮副齿顶修形设计提供理论方法与依据。  相似文献   

12.
A new parallel Robin-Robin adaptive iterative coupling algorithm with dynamic relaxation parameters is proposed for the boundary element method (BEM), and relaxation parameters are derived for other existing iterative coupling algorithms. The performances of the new algorithm and of the modified existing algorithms are investigated in terms of convergence properties with respect to the number of subdomains, mesh density, interface mesh conformity, and BEM element types. Results show that the number of subdomains and the refinement level of the mesh are the two dominant factors affecting the performances of the considered algorithms. The proposed parallel Robin-Robin algorithm shows the best overall convergence behavior for the tested large problems, thanks to its effectiveness in handling complex boundary conditions and large number of subdomains, thus resulting to be very promising for efficient parallel BEM computing and large coupling problems. Source code is available at https://github.com/BinWang0213/PyBEM2D .  相似文献   

13.
A technique, based on a normal offsetting procedure, for the fully automatic generation of two dimensional meshes suitable for finite element analysis is presented. The method positions nodes by first meshing the geometric entities that compose the object boundary, then offsetting those nodal locations along vectors normal to the boundary geometry. The offset row of nodes is processed to ensure a good nodal spacing appropriate for generating well shaped elements. Following processing, the new row is offset again and the cycle is repeated until the entire area is filled with nodes. The boundary based technique ensures good quality element shapes for analysis in critical boundary regions and facilitates applications involving integration of mesh generation with design geometry databases. Nodal locations are calculated based on local parameters avoiding the higher order time complexities associated with global calculations. A technique for controlling mesh density by overlaying an independent mesh density function on the geometry is also presented as part of the method. This approach allows mesh density to be automatically controlled by a variety of factors, such as previous analysis results, that are external to the actual mesh generation process. The independent nature of the function method allows different sources of density information to be used interchangeably without modification to the mesh generation procedure.  相似文献   

14.
15.
胡维东  邵永波  杜之富 《工程力学》2007,24(9):19-25,64
采用有限元法分析了空间KK型管节点在承受平衡轴力作用下的应力集中系数。在有限元分析中,首先采用分区网格法产生KK节点的有限元网格,这种方法可以针对不同应力梯度的区域形成不同质量和精度的网格。然后在分区网格法的基础上,采用ABAQUS(2000)通用软件分析计算了KK型管节点在平衡轴力作用下的应力集中系数的大小和分布。最后,通过对30个KK节点模型的有限元分析,研究了KK节点几何参数对其应力集中系数大小以及分布情况的影响。  相似文献   

16.
Accurate sizing functions are crucial for efficient generation of high‐quality meshes, but to define the sizing function is often the bottleneck in complicated mesh generation tasks because of the tedious user interaction involved. We present a novel algorithm to automatically create high‐quality sizing functions for surface mesh generation. First, the tessellation of a Computer Aided Design (CAD) model is taken as the background mesh, in which an initial sizing function is defined by considering geometrical factors and user‐specified parameters. Then, a convex nonlinear programming problem is formulated and solved efficiently to obtain a smoothed sizing function that corresponds to a mesh satisfying necessary gradient constraint conditions and containing a significantly reduced element number. Finally, this sizing function is applied in an advancing front mesher. With the aid of a walk‐through algorithm, an efficient sizing‐value query scheme is developed. Meshing experiments of some very complicated geometry models are presented to demonstrate that the proposed sizing‐function approach enables accurate and fully automatic surface mesh generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Parameterisation-based methods for planning tool paths on mesh surfaces have been developing for years. The issue of existing mapping deformation which results in machining error has not been sufficiently addressed. And it still needs particular 3D geometric operations when planning iso-scallop tool path. To handle these, an effective approach to directly generating the iso-scallop paths on the parametric domain utilising anisotropic mapping stretch factors is proposed. The conformal parameterisation algorithm, Angle Based Flattening, is first implemented for the mapping between the spatial mesh and the planar mesh. Then a general method to convert 3D path parameters into 2D, which involves the direction mapping and length mapping based on the mapping deformation analysis, is presented. After that, a non-uniform offsetting method is proposed for retrieving the valid 2D offset paths. Finally, the iso-scallop paths on the parametric domain can be generated using the converted 2D path parameters and the present non-uniform offsetting method, and then the corresponding tool paths are obtained by inverse mapping. Simulation and experimental results are given to validate the feasibility and effectiveness of the proposed methods.  相似文献   

18.
进行天然橡胶/304复合材料减振器的研究、设计,结果表明:通过打孔的方式降低减振器初期低应力阶段的刚度是可行的;通过复合钢丝网的方法提高减振器后期高应力阶段的刚度是可行的;确定天然橡胶/304复合材料减振器的最优工艺参数:孔径17.5 mm,在减振器孔的上、下部分分别复合3层304钢丝网,即共复合6层钢丝网;为减振器的研究与设计应用提供参考。  相似文献   

19.
齿轮非线性动力系统的振动功率流分析   总被引:1,自引:0,他引:1       下载免费PDF全文
冯婧  霍睿  王孚懋 《振动与冲击》2010,29(5):203-206
针对一对含侧隙、具有时变啮合刚度的非线性齿轮系统动力学模型,通过对该系统的振源功率进行分析,推导了系统振动功率流的时域仿真算法,探讨了决定系统功率流水平的主要因素。并综合运用点映射和胞映射方法,分析比较了系统对不同参数连续变化的分岔图和功率流图谱,研究了参数变化对功率流的影响,以期为将功率流理论应用于非线性齿轮啮合系统提供参考。  相似文献   

20.
Aerodynamic design based on the Hadamard representation of shape gradients is considered. Using this approach, the gradient of an objective function with respect to a deformation of the shape can be computed as a boundary integral without any additional “mesh sensitivities” or volume quantities. The resulting very fast gradient evaluation procedure greatly supports a one-shot optimization strategy and coupled with an appropriate shape Hessian approximation, a very efficient shape optimization procedure is created that does not deteriorate with an increase in the number of design parameters. As such, all surface mesh nodes are used as shape design parameters for optimizing a variety of lifting and non-lifting airfoil shapes using the compressible Euler equations to model the fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号