首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated phase II activation of the food-derived mutagen 2-hydroxyamino-1-methyl-6-phenyl[4,5-b]pyridine (N-OH-PhIP) by cytosolic acetyltransferase, sulfotransferase, and tRNA synthetase/kinase enzymes from human breast tissue. Cytosol from homogenates of mammary gland tissue obtained from breast-reduction surgery or mastectomy was incubated with and without enzyme-specific cofactors, and mutagen binding of calf thymus DNA was quantified by 32P-postlabeling. In addition, microsomal fractions of mammary epithelial cells from some individuals were examined for prostaglandin H synthetase activation of N-OH-PhIP. Our results show that all four enzymes can participate in activating N-OH-PhIP, thus inducing PhIP-DNA adduct formation in human mammary cells. However, not all individuals exhibited all these activities; instead each individual showed a combination of one or more activation pathways. The present findings demonstrate that the human mammary gland has the capacity to metabolically activate a dietary mutagen by several enzyme systems, including acetyltransferase, sulfotransferase, tRNA synthetase/kinase, and prostaglandin hydroperoxidase catalysis.  相似文献   

2.
Starting from 2-(6-methoxy-1-methylcarbazol-2-yl)ethylamine and diethyl-2,6-pyridine dicarboxylate, the title compounds were obtained through five or six steps. The new compounds retained significant cytotoxicity towards various tumor cell lines, but in vivo studies on murine P388 leukemia, B16 melanoma and Lewis lung carcinoma showed a lowered antitumor activity with respect to that of the related olivacine lead compound 1.  相似文献   

3.
A series of 2-aryl-6-methyl-3-phenylamino-6,7-dihydropyrano[4,3-c]pyrazol-4(2H )-ones were prepared and tested for antiinflammatory, analgesic, antipyretic, antiarrhythmic, antihypertensive and platelet antiaggregating activities. All of them showed an appreciable level of analgesic activity in mice.  相似文献   

4.
合成了 1 [2 ,3 ,5 三氮唑偶氮 ] 5 甲基 2 苯酚 (简称TZAMP) ,并研究了其与钴的显色反应。结果表明 :在 pH5~ 6的邻苯二甲酸氢钾 氢氧化钠缓冲介质中 ,该试剂与钴形成络合比为 1∶1的红色络合物 ,λmax=5 90 6nm ,表观摩尔吸光系数ε=2 5 8× 10 4 ,钴量在 0~ 1 6mg/L范围内遵守比尔定律。  相似文献   

5.
Cytochrome P4501B1 (CYP1B1) is the most recently identified member of the dioxin-inducible CYP1 family. CYP1B1 is constitutively expressed in most human tissues, including colon and breast, and can activate numerous chemically diverse carcinogens. We evaluated the metabolism of the dietary heterocyclic amine carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) by microsomes from yeast expressing the human CYP1B1 protein. PhIP metabolites were analysed by HPLC with fluorescence and absorbance detection. We found that human CYP1B1 metabolizes PhIP to three products: N2-OH-PhIP, a mutagenic activation product; 4'-OH-PhIP, a detoxification product; and 2-OH-PhIP, the mutagenic potential of which is unknown. Metabolite identity was confirmed by co-elution with authentic standards and synchronous fluorescence spectroscopy. The identity of the 2-OH-PhIP standard was additionally confirmed by mass spectrometry. Kinetic studies of the formation of N2-OH-PhIP, 4'-OH-PhIP and 2-OH-PhIP by CYP1B1 indicated apparent Km values of 5.7 +/- 1.3, 2.2 +/- 0.5 and 1.3 +/- 0.2 microM, respectively. Apparent turnover rates were 0.40 +/- 0.03, 0.93 +/- 0.02 and 0.04 +/- 0.00 nmol product/min nmol P450, respectively. At saturating levels of substrate, CYP1B1-mediated formation of the non-mutagenic metabolite 4'-OH-PhIP was favored two-fold over that of the mutagenic metabolite, N2-OH-PhIP and >10-fold over that of 2-OH-PhIP. The formation of N2-OH-PhIP, a potent mutagen implicated in the etiology of human colon and breast cancer, indicates that CYP1B1 may play an important role in PhIP-mediated carcinogenesis.  相似文献   

6.
A carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was measured in beer and wine by HPLC. PhIP was found to be present in all brands of beer and wine analyzed. The concentrations of PhIP in beer and wine were 14.1 +/- 6.18 ng/l (mean +/- SD, n = 11) and 30.4 +/- 16.4 ng/l (n = 10) respectively.  相似文献   

7.
Sinc DNA adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) are formed at relatively high levels in the rat pancreas but not liver, we examined the uptake of PhIP and its N-hydroxy metabolite (N-OH-PhIP) into pancreatic acini and hepatocytes to determine if differential tissue uptake was a factor modulating the formation of PhIP-DNA adducts. In addition, since the precursors of PhIP formation are two amino acids and since various amino acid transporters have been identified in the pancreas, the possible involvement of these transporters in the uptake of PhIP and N-OH-PhIP was investigated. The uptake both heterocyclic compounds into both tissue preparations was rapid, with maximal uptake occurring with 1-2 min. However, PhIP uptake into pancreatic acini was significantly (2-way ANOVA, P < 0.05) greater than uptake of N-OH-PhIP into pancreatic acini and the uptake of both PhIP and N-OH-PhIP into hepatocytes. Although uptake was rapid, efflux of both compounds from both tissue preparations was also rapid. However, the efflux rate constant (1.86 +/- 0.6/min, mean +/- SEM) for PhIP) was significantly lower (Student's t-test, P < 0.05) than that for N-OH-PhIP (4.14 +/- 0.04/min) from pancreatic acini. This, combined with the increased uptake of PhIP into pancreatic acini , suggests that there is substantial but reversible binding of PhIP in the pancreas. The uptake of both PhIP and N-OH-PhIP into pancreatic acini and hepatocytes was not affected by the presence of various amino acids in the incubation buffer, indicating that amino acid transporters are not involved in uptake of these compounds. Furthermore, uptake of both compounds did not appear to be dependent on metabolic energy supply. The above data, together with the high octanol:buffer partition coefficients (logP = 1.322 and 1.301 for PhiP and N-OH-PhIP respectively) suggest that both uptake and efflux of PhIP and N-OH-PhIP are consistent with a process of passive diffusion. The tissue binding characteristics for PhIP in the pancreas may create conditions whereby pancreatic cytochrome P450 1A1 can catalyse the formation of N-OH-PhIP. While N-OH-PhIP is not the ultimate reactive DNA binding species, it has been shown to directly bind to and form DNA adducts. Therefore, it is possible that the apparent selective accumulation of PhIP may contribute to the high level of PhIP-DNA adducts formed in the rat pancreas.  相似文献   

8.
Modifying effects of diallyl disulfide (DAD), aspirin or DL-alpha-difluoromethylornithine (DFMO) on 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced mammary carcinogenesis in SD rats were investigated. A total of 166 female rats, 6 weeks old, were divided into 8 groups. They were fed a high fat diet throughout the experiment. Starting at 7 weeks of age, groups 1-4 were given PhIP (85 mg/kg body weight in corn oil) by gavage 8 times in 10 days, and groups 5-8 were given corn oil alone. For the beginning 4 weeks, groups 2 and 5 were given DAD at 200 ppm in diet. Similarly groups 3 and 6, and groups 4 and 7 were given aspirin (400 ppm) and DFMO (400 ppm), respectively. Mammary carcinomas were only recognized in groups 1-4 at the termination (25 weeks after the start of experiment). Multiplicity (mean number/rat) of neoplasms in group 2 (PhIP+DAD, 0.90/rat) and group 3 (PhIP+aspirin, 1.37/rat) was significantly smaller than that in group 1 (PhIP alone, 2.45/ rat) (P < 0.005 and P < 0.05, respectively). These results indicate that dietary intake of DAD or aspirin during the time corresponding to initiation phase has chemopreventive potential on PhIP-induced mammary carcinogenesis in rats.  相似文献   

9.
10.
11.
While the metabolic activation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) by N-hydroxylation has been well documented, the relative roles of the human cytochrome P450 (CYP) enzymes that catalyze this reaction have not been established. Previous studies indicated that the mutagenic activation product, 2-hydroxyamino-PhIP (N2-OH-PhIP), is produced primarily by CYP1A2, and to a lesser extent by CYP1A1. We recently reported that human CYP1B1 also produces N2-OH-PhIP (Carcinogenesis, 18, 1793-1798, 1997). In the present study, we examined PhIP metabolism by microsomes containing recombinant human CYP1A1, 1A2 or 1B1 expressed in Sf9 insect cells and compared the kinetic values for PhIP metabolite formation. PhIP metabolites were analyzed by high pressure liquid chromatography with fluorescence and absorbance detection. Vmax values for N2-OH-PhIP formation were 90, 16 and 0.2 nmol/min/nmol P450, and the apparent Km values were 79, 5.1 and 4.5 microM for human CYP1A2, 1A1 and 1B1, respectively. The non-mutagenic metabolite, 4'-hydroxy-PhIP, was also formed by all three CYP enzymes with Vmax values of 1.5, 7.8 and 0.3 nmol/ min/nmol P450 and apparent Km values of 43, 8.2 and 2.2 microM for human CYP1A2, 1A1 and 1B1, respectively. Although the Vmax for N2-OH-PhIP production was highest for CYP1A2, the catalytic efficiency (Vmax/Km) of CYP1A1 was greater than that of CYP1A2. These results suggest that, for humans, extrahepatic CYP1A1 may be more important than previously thought for the metabolic activation of the dietary carcinogen PhIP.  相似文献   

12.
13.
The heterocyclic aromatic amines, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) are formed during frying of meat. PhIP and 4,8-DiMeIQx have, after metabolic activation, been shown to form adducts with DNA at the C8 of guanine both in vitro and in vivo. In order to investigate possible urinary biomarkers for estimation of the genotoxic dose of PhIP and 4,8-DiMeIQx, [3H]PhIP-dG, [3H]PhIP-DNA and [14C]4,8-DiMeIQx-DNA were injected i.p. to rats and the excretion of radioactivity in urine and faeces were measured. For all three [3H]PhIP-dG, [3H]PhIP-DNA and [14C]4,8-DiMeIQx-DNA 15-20% of the dose were excreted in the urine and 80-85% of the dose were excreted in the faeces. Urinary excretion showed maximum to 24 h (90%) with a rapid decline, 10% to 48 h and 0% to 72 h. Faecal excretion also showed maximum to 24 h (60%) with a slower decline, 30% to 48 h and 10% to 72 h. HPLC analysis of samples of urine and extracts from faeces, from rats dosed with [3H]PhIP-dG, showed that approximately 90% of the radioactivity co-eluted with PhIP-dG, indicating that PhIP-dG is excreted unmetabolized. HPLC analysis of samples of urine and extracts from faeces, from rats dosed with [3H]PhIP-DNA, showed that approximately 85% of the radioactivity co-eluted with PhIP-dG, indicating that PhIP-DNA adducts is mainly excreted as nucleoside adducts. Approximately 5% of the radioactivity excreted in the urine co-eluted with PhIP-G, indicating loss of deoxyribose. HPLC analysis of samples of urine and extracts from faeces, from rats dosed with [14C]4,8-DiMeIQx-DNA, showed that approximately 90% of the radioactivity co-eluted with 4,8-DiMeIQx-dG, indicating that 4,8-DiMeIQx-DNA adducts is mainly excreted as nucleoside adducts. Man is able to eliminate compounds of a higher mol. wt in the urine than the rat, the percentage of PhIP-dG and 4,8-DiMeIQx eliminated in the urine of man would therefore be expected to be higher than in the rat. Measurement of urinary nucleoside adducts of PhIP and 4,8-DiMeIQx could therefore provide a basis for the development of a biomonitoring strategy for the genotoxic dose of these food derived HAA.  相似文献   

14.
Several new 1-methyl-5-[substituted-4-oxo-1,2,3-benzotriazin-3-yl] -1H-pyrazole-4-acetic acids and their ethyl ester derivatives were prepared. The compounds were tested for analgesic and antiinflammatory activities, acute toxicity, ulcerogenic effect, and as in vitro inhibitors of 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD), since it is claimed that the inhibition of such an enzyme predicts in vivo antiinflammatory activity. Some compounds were more active than phenylbutazone in the phenylbenzoquinone and acetic acid peritonitis tests, and equiactive to the same drug in the carrageenin paw edema test. All the compounds inhibited the 3 alpha-HSD, but no correlation was observed with the paw edema inhibition values. The compounds proved to possess marginal or no ulcerogenic effect, as well as low systemic toxicity.  相似文献   

15.
Leukotriene biosynthesis inhibitors have potential as new therapies for asthma and inflammatory diseases. The recently disclosed thiopyrano[2,3,4-cd]indole class of 5-lipoxygenase (5-LO) inhibitors has been investigated with particular emphasis on the side chain bearing the acidic functionality. The SAR studies have shown that the inclusion of a heteroatom (O or S) in conjunction with an alpha-ethyl substituted acid leads to inhibitors of improved potency. The most potent inhibitor prepared contains a 2-ethoxybutanoic acid side chain. This compound, 14d (2-[2-[1-(4-chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methox y]- 4,5-dihydro-1H-thiopyrano[2,3,4-cd]indol-2-yl]ethoxy]-butanoic acid, L-699,333), inhibits 5-HPETE production by human 5-LO and LTB4 biosynthesis by human PMN leukocytes and human whole blood (IC50s of 22 nM, 7 nM and 3.8 microM, respectively). The racemic acid 14d has been shown to be functionally active in a rat pleurisy model (inhibition of LTB4, ED50 = 0.65 mg/kg, 6 h pretreatment) and in the hyperreactive rat model of antigen-induced dyspnea (50% inhibition at 2 and 4 h pretreatment; 0.5 mg/kg po). In addition, 14d shows excellent functional activity against antigen-induced bronchoconstriction in the conscious squirrel monkey [89% inhibition of the increase in RL and 68% inhibition in the decrease in Cdyn (0.1 mg/kg, n = 3)] and in the conscious sheep models of asthma (iv infusion at 2.5 micrograms/kg/min). Acid 14d is highly selective as an inhibitor of 5-LO activity when compared to the inhibition of human 15-LO, porcine 12-LO and ram seminal vesicle cyclooxygenase (IC50 > 5 microM) or competition in a FLAP binding assay (IC50 > 10 microM). Resolution of 14d affords 14g, the most potent diastereomer, which inhibits the 5-HPETE production of human 5-LO and LTB4 biosynthesis of human PMN leukocytes and human whole blood with IC50s of 8 nM, 4 nM, and 1 microM respectively. The in vitro and in vivo profile of 14d is comparable to that of MK-0591, which has showed biochemical efficacy in inhibiting ex vivo LTB4 biosynthesis and urinary LTE4 excretion in clinical trials.  相似文献   

16.
The binding of an antiviral quinoxaline derivative, 2,3-dimethyl- 6 - (dimethylaminoethyl) - 9 - hydroxy - 6H - indolo - [2,3 - b]quinoxaline (9-OH-B220), to synthetic double and triple helical DNA (poly(dA).poly(dT) and poly(dA).2poly(dT)) and RNA (poly(rA). poly(rU) and poly (rA).2poly(rU)) has been characterized using flow linear dichroism (LD), circular dichroism (CD), fluorescence spectroscopy, and thermal denaturation. When either of the DNA structures or the RNA duplex serve as host polymers a strongly negative LD is displayed, consistent with intercalation of the chromophoric ring system between the base-pairs/triplets of the nucleic acid structures. Evidence for this geometry also includes weak induced CD signals and strong increments of the fluorescence emission intensities upon binding of the drug to each of these polymer structures. In agreement with intercalative binding, 9-OH-B220 is found to effectively enhance the thermal stability of both the double and triple helical states of DNA as well as the RNA duplex. In the case of poly(dA).2poly(dT), the drug provides an unusually large stabilization of its triple helical state; upon binding of 9-OH-B220 the triplex-to-duplex equilibrium is shifted towards higher temperature by 52.5 deg. C in a 10 mM sodium cacodylate buffer (pH 7.0) containing 100 mM NaCl and 1 mM EDTA. When triplex RNA serves as host structure, LD indicates that the average orientation angle between the drug chromophore plane and the helix axis of the triple helical RNA is only about 60 to 65 degrees. Moreover, the thermal stabilizing capability, as well as the fluorescence increment, CD inducing power and perturbations of the absorption envelope, of 9-OH-B220 in complex with the RNA triplex are all less pronounced than those observed for the complexes with DNA and duplex RNA. These features indicate binding of 9-OH-B220 in the wide and shallow minor groove of poly(rA).2poly(rU). Based on the present results, some implications for the applications of this low-toxic, antiviral and easily administered drug in an antigene strategy, as well as its potential use as an antiretroviral agent, are discussed.  相似文献   

17.
Precision-cut liver slices prepared from Aroclor 1254 pretreated male rats were used to investigate the metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). The acetyltransferase and sulfotransferase inhibitors, pentachlorophenol (PCP) and 2,6-dichloro-4-nitrophenol (DCNP), and the cytochrome P450 inhibitor, alpha-naphthoflavone (ANF), were used to modulate PhIP metabolism and DNA and protein adduct formation. PCP and DCNP had similar effects on the formation of some PhIP metabolites. PCP and DCNP decreased the formation of 4'-(2-amino-1-methylimidazo[4,5-b]pyrid-6-yl)phenyl sulfate (4'-PhIP-sulfate) and 2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-hydroxy-PhIP)-glucuronide to 10% and 55% of controls, respectively. 2-Amino-1-methyl-4'-hydroxy-6-phenylimidazo[4,5-b]pyridine (4'-hydroxy-PhIP) was increased by 50% relative to control levels due to PCP and DCNP treatment. PCP and DCNP had different effects on the formation of other PhIP metabolites. Metabolite formation as percent of control for the uncharacterized metabolite, 'Peak A', was 50% and 100% in incubations with PCP and DCNP, respectively. Formation of 4'-hydroxy-PhIP-glucuronide was decreased to 10% of controls with PCP and increased to 147% of controls with DCNP. PCP and DCNP had no effect on the formation of an unidentified metabolite, 'Peak B'. ANF decreased metabolite formation by 60-95%. None of the enzyme inhibitors had a statistically significant effect on PhIP-DNA binding. Covalent binding of PhIP to protein was slightly decreased in incubations containing DCNP or PCP. The lack of significant changes in covalent binding to either DNA or protein suggests that additional pathways may be important in PhIP bioactivation in rat liver slices. With ANF, there was a significant decrease (35%) in protein binding. These observations on the effects of PCP, DCNP and ANF on PhIP metabolism as well as on covalent binding of PhIP to tissue macromolecules are in close agreement with what was reported earlier in hepatocytes. This indicates that tissue slices from various target tissues for tumorigenesis will be a useful in vitro tool for future studies on heterocyclic amine metabolism. This study provides another important example of the utility of precision-cut tissue slices to investigate xenobiotic metabolism and toxicity.  相似文献   

18.
The enzyme DT-diaphorase (NAD(P)H:quinone acceptor oxidoreductase, EC 1.6.99.2.; DTD) is believed to be a good target for enzyme-directed bioreductive drug development because elevated levels of enzyme activity have been described in several human tumour types and it plays a key role in the bioreductive activation of several quinone-based anticancer drugs. As part of an ongoing program to develop new bioreductive drugs, the ability of a series of indoloquinone compounds to serve as substrates for and to be bioreductively activated by purified recombinant human DTD was investigated. Of the seven compounds evaluated, EO9, EO68 and EO4 were substrates for human DTD, but only EO4 was reduced to a DNA cross-linking species, and this DNA damage was both concentration dependent and inhibited by dicoumarol. A broad spectrum of chemosensitivity was observed in the H460 non-small cell lung cancer cell line, with the most potent compounds being EO4 (IC50 = 23.9 nM), EO9 (IC50 = 34.5 nM) and EO68 (IC50 = 37.8 nM). Relatively minor structural changes resulted in major changes in both substrate specificity and cytotoxic potency. Comparative chemosensitivity studies demonstrated that EO4, EO9 and EO68 are preferentially toxic towards DTD-rich H460 cells compared with DTD-deficient H596 cells (ratio of IC50 values for H596 cells to H460 cells were 113.8, 92.2 and 103.9 respectively). In conclusion, this study has identified two new compounds that are substrates for human DTD, one of which (EO4) is reduced to a DNA cross-linking species. Further studies in a broad panel of cell lines and human tumour xenografts are warranted for EO4 and EO68 based upon the result of this study.  相似文献   

19.
Indole-3-carbinol (I3C) (2) is produced endogenously from naturally occurring glucosinolates contained in a wide variety of plant food substances including members of the family Cruciferae, and particularly members of the genus Brassica, whenever they are crushed or cooked. The acid environment of the gut very facilely converts it into a range of polyaromatic indolic compounds, e.g. (3, 4,5), which appear to be responsible for many of the physiological effects observed following the ingestion of these foods. 3-(Methoxymethyl)indole (6) is formed with great ease whenever 2 contacts methylating agents, including methanol, and it is often found as a contaminant of 2. This contamination is often not recognized or easily removed because of the great similarities of the two in melting points and solubilities. However, their biological properties are essentially identical. These so-called chemopreventive compounds are important because of their enzyme induction and suppression, mutagenic, carcinogenic and, particularly, antimutagenic and anticarcinogenic properties. The natural occurrence, formation, preparation, identification, separation, quantification, chemical transformations and general toxicological properties of these substances are critically reviewed in detail in this paper of 146 references, the first of two parts. The enzyme induction and suppression, mutagenic, antimutagenic, mutagenic, anticarcinogenic and carcinogenic effects will be published later as Part II. At the present time it appears that these have considerable potential as natural prophylactic anticancer agents against certain common neoplasms, especially inasmuch modern diets are increasingly deficient in these vegetable-derived substances.  相似文献   

20.
The synthesis of some N,N-disubstituted 1-amino-2-phenyl-3H,12H-naphtho[1,2-b]pyrano[2,3-d]pyran-3-ones 4, by reaction of phenylchloroketene with a series of N,N-disubstituted 3-aminomethylene-2,3-dihydro-4H-naphtho[1,2-b]pyran-4-ones, followed by dehydrochlorination in situ of the primary adducts with DBN, is described. Some compounds 4 showed antiarrhythmic and analgesic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号