首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the kinetics of intermetallic phase formation in duplex stainless steel have been extensively studied for a wide range of compositions, relatively little research has been done on the mechanisms by which the phases nucleate and grow. In this research the emphasis was on the diffusional growth of the sigma (σ) and chi (χ) phases. Intermetallic phase precipitation in a standard DSS type EN 1.4462 was studied in detail at two temperatures: at 850 °C where large amounts of σ phase are formed, and at 650 °C where χ is the main intermetallic phase. The redistribution of the substitutional alloying elements Cr, Mo, Ni, Mn and Si between the ferrite, the austenite and the intermetallic phases was followed by means of scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy (EDX). Mn and Si showed no distinct partitioning between the several phases. The diffusion paths of the other elements were found to be determined by two phenomena. On the one hand, the ferrite to austenite transformation causes Mo and Cr to enrich in the ferritic phase and Ni to enrich in the austenite. On the other hand, Mo (σ, χ) and Cr (σ) are removed from the ferrite by intermetallic phase precipitation. At 650 °C, strong Mo enrichments appear at the α‐γ phase boundaries indicating that grain boundary diffusion could be an important mechanism for Mo to diffuse to the growing χ phase.  相似文献   

2.
The partitioning of alloying elements in as-solidified PH 13-8 Mo stainless steel containing up to 1.02 wt pct Pd has been investigated. The as-solidified structure is composed of two major phases, martensite and ferrite. Electron probe microanalysis reveals that Mo, Cr, and Al partition to the ferrite phase while Fe, Ni, Mn, and Pd partition to the martensite (prior austenite) during solidification and cooling from the solidus. In addition to bulk segregation between phases, precipitation of the intermetallic, PdAI, in the retained ferrite is observed. Precipitation of the normal hardening phase, β-NiAl, is also observed in the retained ferrite. Partition ratios of the various alloying elements are determined and are compared with those observed previously in duplex Fe-Cr-Ni stainless steel solidification structures. The martensite start temperature (Ms) was observed to decrease with increasing Pd concentration.  相似文献   

3.
The aim of this work is to study the influence of the heterogeneous nucleation site quantity, observed in different ferrite and austenite grain size samples, on the phase transformations that result in intermetallic phases in a UNS S31803 duplex stainless steel (DSS). Solution treatment was conducted for 1, 24, 96, or 192 hours at 1373 K (1100 °C) to obtain different ferrite and austenite grain sizes. After solution treatment, isothermal aging treatments for 5, 8, 10, 20, 30, or 60 minutes at 1123 K (850 °C) were performed to verify the influence of different amounts of heterogeneous nucleation sites in the kinetics of intermetallic phase formation. The sample solution treated for 1 hour, with the highest surface area between matrix phases, was the one that presented, after 60 minutes at 1123 K (850 °C), the smaller volume fraction of ferrite (indicative of greater intermetallic phase formation), higher volume of sigma (that was present in coral-like and compact morphologies), and chi phase. It was not possible to identify which was the first nucleated phase, sigma or chi. It was also observed that the phase formation kinetics is higher for the sample solution treated for 1 hour. It was evidenced that, from a certain moment on, the chi phase begins to be consumed due to the sigma phase formation, and the austenite/ferrite interface presents higher S V for all solution treatment times. It was also observed that intermetallic phases form preferably in austenite-ferrite interfaces, although the higher occupation rate occurs at triple junction ferrite-ferrite-ferrite. It was verified that there was no saturation of nucleation sites in any interface type nor triple junction, and the equilibrium after 1 hour of aging at 1123 K (850 °C) was not achieved. It was then concluded that sigma phase formation is possibly controlled by diffusional processes, without saturation of nucleation sites.  相似文献   

4.
The corrosion‐resistive intermetallic compound Fe3Si can non‐electrolytically coat the iron substrate at 973‐1173K in the molten salt composed of NaCl‐KCl‐NaF‐Na2SiF6‐SiO2. However, the adhesion of Fe3Si layer was weak because of the crack formation in the Fe3Si layer. The mechanism of the layer growth and defect formation was studied experimentally. The marker experiments showed that the salt was caught up on the initial surface and left large voids in the layer. The fast deposition of silicon on pure iron surface and the quick growth of Fe3Si wrapped the salt in the layer at the first stage of deposition. The Si penetration from the Fe3Si layer into the α‐Fe substrate was small due to the slow diffusion of Si in α‐Fe. The fast Fe diffusion in the Fe3Si layer left the Kirkendall holes. The formation of these defects could be suppressed in the high Si concentration‐iron alloys.  相似文献   

5.
The equilibrium conditions of four duplex stainless steels; Fe‐23Cr‐4.5Ni‐0.1N, Fe‐22Cr‐5.5Ni‐3Mo‐0.17N, Fe‐25Cr‐7Ni‐4Mo‐0.27N and Fe‐25Cr‐7Ni‐4Mo‐1W‐1.5Cu‐0.27N were studied in the temperature region from 700 to 1000 °C. Phase compositions were determined with SEM EDS and the phase fractions using image analysis on backscattered SEM images. The results showed that below 1000 °C the steels develop an inverse duplex structure with austenite and sigma phase, of which the former is the matrix phase. With decreasing temperature, the microstructure will be more and more complex and finely dispersed. The ferrite is, for the higher alloyed steels, only stable above 1000 °C and at lower temperatures disappears in favour of intermetallic phases. The major intermetallic phase is sigma phase with small amounts of chi phase, the latter primarily in high Mo and W grades. Nitrides, not a focus in this investigation, were present as rounded particles and acicular precipitates at lower temperatures. The results were compared to theoretical predictions using the TCFE5 and TCFE6 databases.  相似文献   

6.
宫明龙  赵骧  宋建宇  王守晶  左良 《钢铁》2008,43(11):82-0
 借助于光学显微镜研究了磁场(12 T)对Fe 0.76%C合金在807 ℃奥氏体化保温不同时间(10 min、30 min、60 min)后以2 ℃/min的冷速冷却后,先共析铁素体显微组织的形貌变化。结果表明:在相同奥氏体化保温时间下,经强磁场热处理样品的先共析铁素体的面积分数和晶粒数量明显高于无磁场热处理样品。这可归结为强磁场降低了先共析铁素体形核所需的驱动力。随着奥氏体化保温时间的延长先共析铁素体晶粒沿着强磁场方向伸长的趋势明显变弱。这主要是由于奥氏体晶粒随着奥氏体化保温时间的延长逐渐增大,导致铁素体晶核之间的距离增大,从而造成奥氏体中的Fe原子向先共析铁素体晶粒扩散的距离增大所致。  相似文献   

7.
对纯镁进行了表面渗锌处理,研究了扩渗温度及扩渗时间对于合金化渗层组织、相结构及反应层连续性的影响。结果表明:扩渗温度的选择有一个合适的范围,温度过低,扩渗速度太慢甚至Zn元素原子的能量达不到其激活能,不能产生活性原子,扩渗过程无法进行。温度过高虽然有利于形成合金化渗层,但会使基体晶粒粗化,甚至改变整个基体,而且,温度过高不利于反应层(金属间化合物区)的稳定:扩渗时间的延长会促使Zn的进入量和金属间化合物的生成量增加,并削弱晶界扩散优势的影响,最终使固溶层和反应层趋于均匀化。要形成连续的反应层,扩渗温度应控制在400℃~420℃,相应的扩渗时间为8h以上。  相似文献   

8.
Ion-beam experiments have yielded strong evidence for trapping of Sb by TiC precipitates in Fe. Alloyed layers exhibiting this effect were produced by ion implanting Ti, C, and Sb into Fe at room temperature and then aging at 873 or 973 K. The depth distribution of the constituents and the microstructure were monitored by ion backscattering analysis and transmission electron microscopy. Heating initially caused a dense dispersion of TiC precipitates to form, and Sb was bound within the region of the Fe containing these precipitates. No evidence of Sb intermetallic compounds was found. Continued annealing resulted in Sb diffusion from the precipitated layer into the underlying bulk of the Fe, and the kinetics of this release were shown to be consistent with a trapping process. These observations and additional evidence prompt the inference that Sb is bound to the TiC precipitates, presumably occupying the TiC-Fe interface. The binding enthalpy is estimated to be ∼0.4 eV when referenced to an untrapped Sb site in theα-Fe phase. This trapping effect may provide a means for immobilizing Sb and other metalloid impurties in ferritic steels to inhibit temper embrittlement.  相似文献   

9.
摘要:尖晶石型铁氧体MFe2O4(M=Ni、Zn、Mn和Mg等)由于其良好的稳定性和优越的磁电性能,在磁电领域受到广泛应用。以电炉粉尘为原料,先利用NaOH溶液对电炉粉尘进行预处理,然后加入不同含量的NiCl2·6H2O,通过水热方法直接合成具有尖晶石结构的Ni-Zn铁氧体((Ni,Zn)Fe2O4),最后详细探讨了不同浓度的NaOH预处理除硅和配入不同量NiCl2·6H2O对合成(Ni,Zn)Fe2O4磁性能的变化规律。结果表明,当NaOH浓度从0增加到10mol/L时,预处理后电炉粉尘中SiO2质量分数从6.85%降低到1.49%,合成的Ni-Zn铁氧体的饱和磁感应强度从19.5A·m2/kg升高到32.3A·m2/kg;而预处理后电炉粉尘与NiCl2·6H2O的质量比从1∶0.7降低到1∶0.9时,所得样品的饱和磁感应强度从28.4A·m2/kg增长到32.3A·m2/kg。该工艺不仅简化了电炉粉尘的处理工艺流程,而且实现了其高附加值利用。  相似文献   

10.
采用EPMA、XRD、TEM等手段分析了压水堆核电站主管道用Fe20Cr9Ni铸造奥氏体不锈钢中σ相的成分和结构,通过等温时效处理、金相组织分析,研究了σ相析出动力学,获得了σ相析出的时间-温度-转变(TTT)曲线及JMA析出动力学方程.研究结果表明:Fe20Cr9Ni中σ相析出的温度范围为600~840℃,750℃时σ相析出动力学最快,600~750℃时σ相的析出量计算值与实验值符合得较好.σ相形成激活能为149kJ/mol,接近Cr在铁素体中的扩散激活能值,其过程主要受Cr扩散控制.Fe20Cr9Ni铸造奥氏体不锈钢中σ相析出特征主要由其特殊的合金成分和组织结构决定.  相似文献   

11.
采用水热合成法制备镍锌铁氧体粉体,以稀土元素La、Ce进行掺杂,利用SEM和XRD 等手段对样品进行表征.结果表明,La3+、Ce3+掺杂后,La3+、Ce3+离子掺杂进入镍锌铁氧体晶格后,会产生一定的晶格畸变,造成晶粒常数的增大,但对晶体的形貌影响不大.除存在少量大颗粒,立方尖晶石相Ni0.35Zn0.65Fe1.9...  相似文献   

12.
在对双相钢两相区奥氏体化过程进行热力学与动力学分析的基础上,建立了两相区奥氏体化过程的扩散模型,并采用显式有限体积法对740℃与780℃下的奥氏体化过程进行了数值求解.模拟结果表明:奥氏体长大初期受C元素在奥氏体中的扩散控制并很快达到亚平衡.该阶段奥氏体长大速度较快.奥氏体长大后期受Mn元素在铁素体中的扩散控制.该过程由于Mn元素的扩散速率比C元素的扩散速率低几个数量级而持续数千秒.当Mn元素在两相中的扩散通量相等时,奥氏体停止长大,Mn元素继续从铁素体向奥氏体中转移以完成其在两相中的均化.  相似文献   

13.
采用高分子凝胶法制备了Ni0.5Zn0.5La0.05Fe1.95O4铁氧体。当煅烧温度为600℃时,立方晶系尖晶石结构的Ni0.5Zn0.5La0.05Fe1.95O4相初步形成。掺杂稀土La后,Ni0.5Zn0.5La0.05Fe1.95O4铁氧体的吸波性能显著提高,吸收峰向高频移动,其电磁波反射率小于~10dB的频宽可达2.7GHz,最小反射率为-15.6dB。  相似文献   

14.
Room-temperature tensile and bend tests and Auger electron spectroscopy (AES) were used to study embrittlement in sheet steels coated with a 55 pct Al-Zn alloy and then heated in the range 316 to 538 °C for up to 5000 hours. The results of these studies show that embrittlement is caused by diffusion of Zn from the coating into the ferrite grain boundaries of the steel substrate, reducing intergranular cohesion. The activation energy for grain boundary diffusion of Zn in iron is estimated at 89 kJ/mole. When present in the steel in concentrations of at least 0.04 pct by weight, P is shown to prevent embrittlement by preemptively segregating to the ferrite grain boundaries where it blocks intergranular diffusion of Zn.  相似文献   

15.
The formation of zinc ferrite (ZnFe2O4) during the roasting of iron-bearing zinc concentrates requires substantial additional processing to recover the zinc from this compound by leaching and to eliminate the iron from the leachate. The phase changes that occur in the particles of a typical industrial zinc sulfide concentrate during roasting in a fluidized bed at 1223 K were investigated by the use of light microscopy, electron microprobe analysis, and SEM with EDS. The processes which the iron undergoes during its eventual transformation into ferrite have been clarified by examination of the phases and the morphology of partially roasted marmatitic sphalerite particles (Zn, Fe)S, and by reference to the known phase equilibria involved in the Zn-Fe-S-0 system. The oxidation of ironbearing sphalerite occurs in three stages. The first involves the selective diffusion of most of the iron to the particle surface resulting in the formation of an iron oxide shell enclosing a largely unreacted zinc sulfide kernel. In the second stage, this kernel is oxidized to form a solid solution of zinc oxide and iron oxide. The iron is initially present in the ferrous state but, with the disappearance of the sulfide kernel, is oxidized to ferric iron. In the final stage, this dissolved iron oxide and the iron oxide shell react with the surrounding zinc oxide to form the refractory spinel zinc ferrite.  相似文献   

16.
邝霜  齐秀美  韩赟  康永林 《工程科学学报》2015,37(10):1319-1324
根据中锰钢热轧组织结构确立两相区奥氏体化的几何模型和初始条件,利用DICTRA动力学分析软件对中锰钢马氏体基体奥氏体化过程进行计算分析.在奥氏体化初期的形核过程中,马氏体中过饱和的碳锰元素从铁素体迅速转移到奥氏体并在相界面奥氏体一侧聚集.后续的相变过程中,碳在奥氏体中快速均化,但锰在相界面奥氏体一侧的聚集加剧.相变初期奥氏体界面推移速度比中后期高出若干个数量级,但随时间推移迅速衰减.相变初期相界面推移是碳扩散主导,相变后期界面推移受到锰在奥氏体中扩散速度制约.温度升高可显著提高相界面推移速度.达到相同数量奥氏体的情况下,低温长时退火有利于锰从铁素体向奥氏体转移并提高其在奥氏体中的富集度,从而提高奥氏体的稳定性.  相似文献   

17.
The method of electron probe microanalysis is applied to analyze the distribution of elements over the diffusion layer obtained by the deposition on copper of gas-thermal coatings involving Al, Ni, Cr, Fe and subsequent thermal treatment. It is established that the penetration depth and concentration of the coating elements reach their maximal values in the case of the presence of an aluminum sublayer.  相似文献   

18.
钱海帆  张宇光  王炜  张建平 《钢铁》2012,47(9):57-62,78
为了研究Fe-C-Mn-A1系TRIP钢两相区奥氏体化过程中合金元素在奥氏体和铁素体中的分布,利用热膨胀仪、金相显微镜、电子探针等仪器,在对TRIP钢两相区奥氏体化过程进行热力学与动力学分析的基础上,建立了两相区奥氏体化过程的扩散模型,采用显式有限体积法对800℃与840℃的奥氏体化过程进行了数值求解.模拟结果表明:奥氏体转变初期受C元素在奥氏体中的扩散控制达到亚平衡,奥氏体转变速率较快;此时A1元素在奥氏体与铁素体界面处的浓度差较显著,Mn元素在奥氏体与铁素体界面处的浓度差不显著.奥氏体转变后期受Mn元素在铁素体内的扩散控制,转变速率较慢;此时A1元素在铁素体内已大量富集,Mn元素在奥氏体与铁索体界面处有较显著的浓度差.  相似文献   

19.
A newly developed computer program for the simulation of diffusional transformations has been applied to study the escape of carbon from a plate of ferrite assuming that the plate initially formed by a partitionless reaction from an FeC austenite. Thereafter the ferrite-austenite interface was assumed to be immobile and local equilibrium was assumed for carbon but not for iron. The process first follows a parabolic rate law and is there controlled by the rate of diffusion in ferrite. Later stages are not parabolic and are controlled by the diffusivity in austenite. Its concentration dependence was taken into account. It was found that the rate could be estimated analytically using the maximum value rather than the average value.  相似文献   

20.
In this study the influence of Mn on galvannealed coatings of 1.7% Mn‐1.5% Al TRIP‐ and 23% Mn X‐IP®‐steels was investigated. It is shown that the external selective oxides like Mn, Al and Si of the TRIP steel which occur after annealing at 800 °C for 60 s at a dew point (DP) of ‐25 °C (5% H2) hamper the Fe/Zn‐reaction during subsequent galvannealing. Preoxidation was beneficially utilized to increase the surface‐reactivity of the TRIP steel under the same dew point conditions. The influence of Mn on the steel alloy was investigated by using a 23% Mn containing X‐IP®‐steel which was bright annealed at 1100 °C for 60 s at DP ‐50 °C (5% H2) to obtain a mainly oxide free surface prior to hot dip galvanizing (hdg) and subsequent galvannealing. As well known from the literature Mn alloyed to the liquid zinc melt stabilizes δ‐phase at lower temperatures by participating in the Fe‐Zn‐phase reactions, it was expected that the metallic Mn of the X‐IP®‐steel increases the Fe/Zn‐reactivity in the same manner. The approximation of the effective diffusion coefficient (Deff(Fe)) during galvannealing was found to be higher than compared to a low alloyed steel reference. Contrary to the expectation no increased Fe/Zn‐reaction was found by microscopic investigations. Residual η‐ and ζ‐phase fractions prove a hampered Fe/Zn‐reaction. As explanation for the observed hampered Fe/Zn‐reaction the lower Fe‐content of the high‐Mn‐alloyed X‐IP®‐steel was suggested as the dominating factor for galvannealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号