首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
当浮环轴承转子系统高速旋转时,油膜温升和浮环弹性变形是不可避免的。为研究油膜温升和浮环弹性变形对浮环轴承润滑静特性的影响,建立浮环轴承热流体动力润滑模型,利用数值差分法联立求解雷诺方程、能量方程、Rolelands黏温方程、浮环弹性变形方程和内外油膜膜厚方程,将油膜压力场、温度场和浮环弹性变形进行耦合分析,得到热效应和浮环弹性变形耦合影响下的油膜温升和浮环弹性变形量。结果表明:浮环轴承内外油膜温升和浮环弹性变形量随着偏心率的增加都逐渐增大;浮环弹性变形降低了内油膜温升,增加了外油膜温升;油膜温升降低了浮环弹性变形量;在耦合条件下内外油膜承载力、端泄流量和摩擦功耗均降低。  相似文献   

2.
浮环轴承在高速工况下运行时,浮环表面在油膜压力作用下会发生弹性变形,影响轴承润滑性能。针对带有深浅腔的浮环动静压轴承,采用有限元法和有限差分法耦合求解油膜Reynolds方程、能量方程和温黏关系式,采用变形矩阵法求解弹性变形方程,计算浮环弹性变形分布;在浮环平衡的基础上,分析浮环变形对环速比、油膜承载力、端泄流量等润滑特性参数的影响。结果表明:浮环弹性变形分布与油膜压力分布呈现一致性,转速越高,偏心越大,变形越明显;考虑浮环弹性变形,浮环达到平衡状态时,内膜偏心率增加,环速比减小,轴承承载力与摩擦力矩均有所增加;由于浮环变形对内、外膜间隙及流动液阻的不同影响,使得内膜端泄流量增加,外膜端泄流量减少。  相似文献   

3.
为研究热效应对高速圆锥动静压轴承静特性的影响,建立具有深浅腔结构的圆锥动静压轴承的Reynolds方程、能量方程、深腔流量平衡方程及相关控制方程;采用有限元法和有限差分法对其进行离散,运用正系数法则对能量方程系数及常数项的离散系数进行处理,联立求解得到油膜压力分布与温度分布,计算出高速圆锥动静压轴承的静参数,并分析热效应对高速圆锥动静压轴承静特性的影响。结果表明:热效应使高速圆锥动静压轴承油膜压力减小,且转速越大,压力减幅越大,油膜温升越明显;计入热效应后,润滑油黏度降低,引起高速圆锥动静压轴承偏位角增大,轴向、径向承载力减小,端泄流量增大,摩擦力减小,且转速越高变化越显著。  相似文献   

4.
为研究粗糙度对浮环轴承静特性的影响,基于雷诺方程并结合随机粗糙模型建立粗糙形状的浮环轴承模型,采用有限差分法对模型进行求解,得到浮环轴承润滑过程中的油膜厚度和油膜压力分布。结果表明:油膜承载力随粗糙度的增大而增大,内层油膜承载力大于外层油膜承载力;端泄流量随粗糙度的增大而减小,内层油膜端泄流量大于外层油膜端泄流量;摩擦功耗随粗糙度的增大而增大,内层油膜摩擦功耗小于外层油膜摩擦功耗。  相似文献   

5.
针对高速工况下浮环轴承润滑特性的理论预测和实验结果存在偏差的问题,在充分考虑热效应影响的基础上建立涡轮增压器径向浮环轴承的热流体动力润滑模型。该模型的理论计算结果和试验结果基本一致,验证其正确性。研究浮环内外层油膜间隙、浮环厚度和浮环宽度等浮环结构参数对浮环轴承润滑特性的影响。结果表明:在其他参数一定时,外层油膜间隙变大时,环速比和流量将变大,将带走更多的热量,轴承温升降低;内层油膜间隙变大,环速比将变小,但流量增大,轴承温升下降;浮环厚度变大,环速比将下降,但浮环厚度对内外膜温升几乎没有影响;浮环外接触表面宽度越大,环速比下降,温升将变大。  相似文献   

6.
以浮环轴承为研究对象,基于多相流理论建立其润滑有限元模型,推导摩擦功耗、内外油膜与所接触的固体元件的温升的解析表达式;利用FLUENT求解器与其自定义函数接口(UDF)对模型进行仿真计算;综合考虑试验条件的局限性,拓展在仿真计算中的轴颈角速度范围,进一步分析宽域润滑工况下浮动环均布的油孔数目对摩擦功耗、温升、浮动环转速、端泄流量等润滑静特性参数的影响。结果表明:浮动环油孔数目的增加会在一定程度上增大轴承内间隙润滑油的注入量;浮动环油孔数目越多,端泄温升越小,内外间隙变形越小,浮动环转速越快;浮动环油孔数目对内外油膜的摩擦功耗和油膜变化率的影响较小,对浮动环转速和内外油膜的端泄流量的影响较大。该研究为浮环轴承的设计和静特性分析提供了可靠的实验依据。  相似文献   

7.
采用有限差分法联立求解内、外油膜的Reynolds方程、膜厚方程和浮环弹性变形方程,到在不同转速和偏心率下浮环的弹性变形量,研究浮环弹性变形对浮环轴承润滑特性的影响。结果表明:随着转速和偏心率的增加,浮环弹性变形量逐渐增加;浮环弹性变形降低了内油膜的承载力、端泄流量和摩擦功耗,增加了外油膜的承载力、端泄流量,但对外油膜摩擦功耗影响较小。  相似文献   

8.
高速动静压浮环轴承雷诺数增大,油膜工作在紊流状态下.采用Ng-pan紊流润滑理论建立了浮环动静压轴承的数学模型,对轴承的静特性进行了有限元仿真并与层流状态下的计算结果进行了比较.结果表明除流量外,紊流计算结果普遍高于层流计算结果,应用紊流模型分析高速浮环轴承特性更为准确.  相似文献   

9.
不同油孔数量会改变浮环轴承油膜润滑特性,从而影响转子的振动特性及稳定性。基于流动连续性方程与轴承润滑理论,推导浮环轴承油膜控制方程,揭示油孔数量与浮环轴承润滑特性之间的关系。以某型汽油机用涡轮增压器浮环轴承为例,构建浮环轴承有限元模型,基于计算流体力学方法分析油膜润滑特性,研究不同油孔数量对浮环轴承最大压力、油膜承载力及动力学特性系数的影响。结果表明:浮环油孔数量从2增长到8,内外油膜最大压力、外油膜承载力及油膜动力学特性系数下降,内油膜承载力上升;内油膜承载力在油孔数量为2时随着转速的上升而逐渐下降,在油孔数量为4时无明显变化,在油孔数量为6、8时随着转速的上升而上升;随着转速的上升,油孔对承载力的影响逐渐上升,而对最大压力及动力学特性系数的影响逐渐减小。  相似文献   

10.
以流体润滑为基础,考虑热效应对油膜黏度的影响,研究涡轮增压器浮环轴承的动态特性,利用DyRoBesBeperf软件建立涡轮增压器浮环轴承的参数化模型,在环速比一定时分析浮环轴承内外油膜压力的分布,以及偏心率、油膜的刚度、阻尼随转速的变化规律。研究表明:在浮环轴承结构参数及载荷一定的情况下,随转子转速的增加,其偏心率下降,Sommerfeld数和功耗均增大,且内油膜的Sommerfeld数、功耗大于外油膜的Sommerfeld数及功耗,因此内油膜承载力大于外油膜承载力;因偏心率随转速的增大而减小,因此油膜等效刚度和等效阻尼下降。  相似文献   

11.
环速比是影响浮环轴承静动特性的关键运行参数,大量试验数据表明浮环轴承环速比与工作转速的呈强烈的非线性关系,而理论对环速比的预测还存在较大偏差,针对该问题,建立了浮环轴承的稳态热流体动力润滑润滑模型,计算了典型工况下轴承的动静特性参数,研究了等温、导热和绝热情况下环速比、温升、功耗和偏心率等关键参数随转速的变化规律,分析了浮环材料对环速比的影响,探讨了传统环速比解析计算公式的适用范围.研究发现:等温模型在大部分转速范围内均严重高估了环速比,而基于导热模型的计算结果与试验结果吻合良好,随着转速的升高,理论和试验结果均显示环速比先急速上升后逐渐下降,在中高转速下内外膜的黏度差异和热变形是环速比快速下降的两个重要因素,同时,使用高热膨胀系数材料的浮环会导致环速比进一步降低.因此,热效应是浮环轴承设计过程中必须要考虑的因素.  相似文献   

12.
基于质量守恒边界条件的浮环轴承贫油润滑特性理论分析   总被引:2,自引:0,他引:2  
对浮环轴承贫油润滑机理进行了理论分析。在Elrod算法的基础上,采用有限差分法求解基于质量守恒边界条件(Jakobsson-Floberg-Olsson,JFO)的表征内外油膜压力分布的Reynolds方程,推导内外油膜承载力、流量和注入内油膜的压差注油量的表达式,建立贫油润滑状态下的内油膜压力分布模型。利用Matlab对浮环轴承润滑机理进行了仿真计算,分析静载荷和供油压力对浮动环与轴颈的静平衡位置、内外油膜端泄量与压差注油量的影响,进而讨论贫油润滑状态下轴颈的静平衡位置。结果表明较大的静载荷会产生较大的浮动环偏心率和轴颈偏心率以及内外油膜端泄量,但是压差注油量则会减小。在贫油润滑状态下,内油膜在收敛间隙中发生破裂,承载能力下降,提高供油压力可以明显地增大压差注油量,有效地避免内油膜贫油现象的出现。  相似文献   

13.
综合考虑供油量和润滑油温黏效应对浮环轴承润滑特性的影响,同时结合稳态下贫油润滑的油膜力模型,建立浮环轴承贫油润滑温度预测模型。以入口润滑油流量为可变参数,利用数值计算方法分析供油量对轴承内外油膜温度的影响,并在浮环轴承试验台上对出油口油温度进行测量。仿真结果与试验结果具有较好的一致性,验证了浮环轴承贫油润滑温度预测模型的准确性。研究结果表明:浮环轴承油膜温度随转速的增大而升高,随供油量的增大而下降;内油膜温升明显高于外油膜温升,浮环温度亦随供油量的减小而升高,浮环温度基本介于内外油膜温度之间。  相似文献   

14.
给出了控制径向推力联合浮环动静压轴承内、外层油膜的气油两相流变密度、变粘度无量纲非定常Reynolds方程及压力边界条件和深腔流量平衡方程,对不同偏心率下含气率为0和0.1的径向、推力部分内外油膜进行了有限元计算,得到压力分布及各静态特性曲线.结果表明,小偏心率时深腔气穴对轴承性能影响较为明显,使径向油膜压力峰值下降20%以上,轴向油膜压力峰值下降10%以上,并使浮环轴承径向、轴向部分的承载力、摩擦功耗减小,流量增大.随着偏心率的增大及转速的提高,气穴的影响程度减小.  相似文献   

15.
为研究进水温度变化对水润滑轴承润滑特性的影响,采用有限差分法建立水润滑轴承弹流润滑模型,分析不同进水温度和载荷条件下水润滑轴承润滑特性的差异,并且通过试验验证摩擦因数的变化规律。研究发现:随着进水温度升高,轴承的水膜压力下降,但在水膜压力峰区域最大水膜压力升高、最小水膜厚度减小、偏心率增大,表明进水温度升高对润滑性能有着负面影响;在相同的载荷和转速下,轴承摩擦因数随着进水温度升高而下降,且高载荷下进水温度对摩擦因数的影响更大。通过试验发现进水温度越高对摩擦因数变化的影响越大,不同进水温度下载荷越低,载荷的变化对摩擦因数变化量的影响越大。  相似文献   

16.
浮环厚度变化对浮环轴承稳定性影响的实验研究   总被引:1,自引:0,他引:1  
通过对浮环减薄前后实验结果的对比分析,研究了浮环厚度变化对浮环轴承涡动及稳定性的影响,并给出了三维谱图、涡动比与转速图、典型分岔图.结果表明,浮环轴承浮环减薄引起油膜涡动力的变化,在升速过程中,减薄前的浮环轴承稳定性要好;在高速稳态运行过程中,减薄前后浮环轴承稳定性差别不大;在降速过程中,减薄前的浮环轴承稳定性要差.浮环内、外油膜半速涡动现象的涡动比分别接近于0.5与0.3.  相似文献   

17.
易圣先  赵俊生  殷琼 《轴承》2014,(3):26-30
基于摩擦学和流体动力润滑理论,对浮环轴承的偏心率及动态特性进行了研究。以浮环转速比为切入点推导出了浮环轴承润滑过程中偏心率与结构参数的变化关系,探讨了浮环轴承的动态特性与间隙比、浮环内外半径比的变化规律。结果表明,间隙比或浮环内外半径比的增加都将使浮环轴承总阻尼减小;而总刚度的绝对值随间隙比的增加而增大,随半径比的增加而减小。  相似文献   

18.
空化、两相流现象是滑动轴承润滑中的典型现象之一,影响着水润滑轴承的静态和动态特性。基于统计物理学及多相流理论,建立大量纳米气泡对流体的阻力模型,以及含纳米气泡的两相流体动力润滑理论模型,并采用有限差分法求解得到压力场、空化气泡数分布及动压水润滑轴承静、动态特性系数,分析并讨论空化两相流对水润滑轴承静、动态特性的影响。结果表明,与Reynolds边界相比,空化条件下轴承的承载力和偏位角均呈增大趋势,动态刚度和阻尼系数也出现不同程度的增加。  相似文献   

19.
为研究船舶工况参数对可倾瓦推力轴承稳态和瞬态润滑特性的影响,利用Matlab建立船舶可倾瓦推力轴承热弹流体动压润滑计算模型,考虑轴瓦的热弹性变形,联立黏温方程、能量方程、油膜刚度和阻尼系数方程求解模型,研究热弹性变形以及不同载荷和转速情况下船舶可倾瓦推力轴承的润滑特性。结果表明:考虑热弹性变形时,最小油膜厚度增大,最大油膜压力和最高油膜温度降低;在正常运行工况条件下,轴瓦的热弹性变形有利于改善推力轴承的润滑性能,轴承设计时应考虑材料的抗压性和耐热性;在转速不变时随着载荷的增大,最小油膜厚度降低,最大油膜压力、温度、油膜刚度和阻尼均增加,需要特别注意重载工况下轴承的动压润滑状况;在载荷相同的情况下,随着转速的提高,油膜厚度和油膜温度增大,油膜压力变化不明显,油膜刚度和阻尼随转速增大而降低,在转速较低时下降较为明显。研究结果为优化轴承设计、提高轴承运行的可靠性和稳定性提供参考。  相似文献   

20.
杨德全  苗刚 《机械制造》2009,47(11):5-7
多油叶轴承比单油叶轴承稳定性好,但摩擦损耗较大。为了克服这一缺点,在多油叶轴承和轴颈间加入一个浮环,从而达到提高承载能力、减少摩擦损耗的效果。采用流体力学边界元方法计算了六叶错位浮环轴承的流体动力学特性,得到了几种不同偏心率下,润滑区域内的流场分布、轴瓦表面的压力分布及浮环表面的压力分布;并对无浮环的六叶错位轴承与六叶错位浮环轴承的内摩擦损耗进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号