首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
开发了一种可以在90℃固化并适用于热熔法制备预浸料的环氧树脂体系。树脂体系在不同温度下的粘度表明树脂体系具有良好的流动性能,通过差示扫描量热仪(DSC)确定树脂体系的固化工艺为70℃/2 h+90℃/6h。通过研究辊面温度和压力对纤维浸透性的影响及树脂的性能,确定了制备预浸料的工艺参数。T700碳纤维预浸料具有良好的工艺性能,其弯曲强度达1 408 MPa,剪切强度达73 MPa。  相似文献   

2.
在热熔膜法制备预浸料的前提下,将不同的通用环氧树脂与多官能度环氧树脂复配,找到最佳的耐热树脂体系。采用示差扫描量热法(DSC)、动态热机械分析(DMA)、热变形温度测试及平板拔丝法研究了该树脂体系中潜伏性固化剂双氰胺(DICY)和促进剂苯基二甲脲(UR300)的合适配比。采用DSC和红外光谱法(FTIR)研究了该体系的固化制度。采用DMA、热变形温度及热重分析法(TGA)研究了该体系的耐热性。结果表明,DICY和UR300的最佳用量为树脂总质量分数的7%和1.5%。固化制度为105℃/2 h+130℃/2 h+160℃/2 h。固化物的玻璃化转变温度(Tg)为205.5℃,热变形温度为196.5℃,热失重5%、10%和50%时的温度分别为330.3℃、359.8℃和415.5℃,具有优异的耐热性。  相似文献   

3.
基于苯并噁嗪和三官能环氧树脂的共混体系,制备了可用于热熔法制备预浸料的阻燃型基体树脂。考察了树脂体系的软化点、粘性,并对其固化物的阻燃性能、耐热性能及弯曲性能进行了测试。结果表明,通过配方调整,该树脂体系粘性满足热熔法的成型要求,其固化物阻燃性能达到UL-94 V-1,极限氧指数为33,玻璃化转变温度为212℃,弯曲强度达131MPa。通过加入催化剂间苯二酚调节体系的粘度变化,当间苯二酚含量为2wt%时,体系满足预浸料制备复合材料时对粘度变化的要求。该适用于热熔法制备预浸料的阻燃型改性苯并噁嗪树脂可用于航空航天领域。  相似文献   

4.
采用DSC和流变仪研究了酚醛树脂、单官能苯并噁嗪和壬基酚改性的对二氨基二苯甲烷型苯并噁嗪的固化反应活性和黏温特性。并对壬基酚改性苯并噁嗪树脂用于热熔预浸料基体树脂的热性能、力学性能、黏温特性进行了深入研究。壬基酚改性苯并噁嗪树脂(BOZ-NP)可改善树脂的黏温特性,有效地降低固化反应温度,并具有较高的初始反应温度。加入25%的壬基酚的M-BOZ经180℃固化后的固化度达95%以上,5%失重率在342℃。加入10%的AG-80后BOZ-NP树脂的Tg在156.4℃。壬基酚和环氧改性苯并噁嗪树脂具有良好的力学性能和适宜的黏温特性,可作为热熔法苯并噁嗪预浸料树脂基体。  相似文献   

5.
本文选择适合无色透明环氧树脂/酸酐树脂的促进剂,对无色透明环氧树脂体系的流变性、凝胶时间、热性能等进行分析,确定了树脂的固化工艺。采用热熔胶膜法制备玻璃布预浸料,用模压法制备层合板,对预浸料和复合材料的物理性能、力学性能、耐热性和透光率进行测试,结果表明,无色透明环氧树脂预浸料在135℃/2h完全固化,复合材料层压板力学性能耐热性和透光率较好。  相似文献   

6.
采用弹性纳米粒子改性3233中温固化阻燃环氧树脂,制备3233/EW250F玻璃纤维布预浸料,并测试树脂、预浸料和复合材料性能.结果表明,弹性纳米粒子不会降低复合材料的玻璃化转变温度,能提高自粘性树脂-3233树脂预浸料的滚筒剥离强度,有利于树脂预浸料的自粘性,树脂具有韧性,抗冲击性能好,其CCF300碳纤维复合材料冲...  相似文献   

7.
通过改性剂与固化剂的配合,制得了具有较长贮存期的改性环氧树脂溶液。研究了树脂凝胶化时间t_gel与温度T间的关系,In t_gel对1/T是一条直线。利用无量纲凝胶化时间,确定了预浸料烘焙温度,并对压制过程实施在线固化监测,取得了良好的结果。制品具有良好的机械、电气性能。热分析表明它在289℃开始分解。根据热失重数据,计算了树脂的耐热温度指数为166℃(筛选法)。因此,研制的玻璃布层压板可作为F级绝缘材料使用。  相似文献   

8.
在自动铺带成型过程中,粘性和铺覆性是用于描述预浸料是否适合铺贴的两个重要因素,将粘性和铺覆性分别独立地研究能更好地理解预浸料的铺放适宜性。本文主要是针对预浸料的粘性进行探索,论述了预浸料粘性的物理意义,总结了当前国内外预浸料粘性的测量及表征方法,提出了以"平均剥离力"定量表征预浸料的粘性,并在自主搭建的试验平台上,研究了自动铺带成型过程中的主要工艺参数(取出时间、铺放压力、铺放速率、热风温度等)对预浸料粘性的影响。实验结果表明,在一定范围内,预浸料的粘性随取出时间先增大后减小,而随铺放压力的增加、铺放速率的减小、热风温度的升高而增大,为自动铺带工艺参数的控制提供了参考。  相似文献   

9.
使用UTS-50/B201预浸料通过袋压法成型工艺制作自行车车架,在固化及胶接保温处理后均产生了气泡,增加了后续劳动强度和工作时间,从而增加了生产成本,降低了生产效率。研究结果表明,通过调整树脂体系的粘性、热焓、凝胶时间以及预浸料的树脂流动度,可有效减少乃至消除制品中的气泡。  相似文献   

10.
采用非等温差示扫描量热(DSC)法对纳米二氧化硅/环氧树脂/双马来酰亚胺/氰酸酯(nano-SiO2/EP/BMI/CE)树脂进行了固化反应动力学和固化工艺研究。通过Kissinger法和Ozawa法求得了nano-SiO2/EP/BMI/CE树脂体系固化反应动力学的表观活化能。结果表明:改性CE树脂体系的固化工艺参数为凝胶温度112℃、固化温度195℃及后处理温度213℃,进而确定了改性CE树脂体系的最佳固化工艺条件为"150℃/3 h→180℃/3 h→200℃/2 h";改性CE树脂体系的平均表观活化能为59.90 kJ/mol。  相似文献   

11.
以先进拉挤(Advanced Pultrution)[1]ADP成型技术为研究背景,借助差示扫描量热法(DSC)对USN12500碳纤维/环氧预浸料固化所涉及的温度和时间进行了研究与分析。以弯曲强度作为考察指标设计正交试验,优选了模拟的拉挤成型固化工艺参数。试验结果表明,①后固化温度下的保温时间对制品的力学性能影响最大,预处理温度下的保温时间影响最小;②预处理温度80℃下处理25min、热压温度130℃下保温保压25min以及后固化温度150℃下保温1.5h为本组试验的优方案。  相似文献   

12.
联苯酚醛环氧树脂固化动力学及热性能研究   总被引:1,自引:0,他引:1  
以4,4'-二氨基二苯砜(DDS)为固化剂,采用非等温示差扫描量热法(DSC)研究了联苯酚醛环氧树脂(BPNE)的固化动力学。通过外推法确定了体系的固化工艺。采用Kissinger、Ozawa法计算出固化体系的表观活化能,根据Crane理论计算得到该体系的固化反应级数。采用DSC,热重分析(TGA)研究了固化物的耐热性。结果表明:BPNE的固化工艺为160℃/2h+200℃/2h+230℃/2h;固化反应的活化能约为61.86kJ/mol,指前因子为5.27×105min-1,反应级数为1.1;玻璃化转变温度(Tg)为167℃,其10%热失重温度为398.1℃,800℃残炭率为29.37%,与双酚A环氧树脂/DDS固化物相比,分别提高了22℃,11.71%。  相似文献   

13.
5231环氧树脂体系/玻璃布复合材料性能研究   总被引:4,自引:1,他引:3  
一种160℃固化的改性环氧树脂体系5231,该树脂体系粘性适中,具有良好的阻燃性和较高的抗滚筒剥离强度,其预浸料可与Nomex芳纶纸蜂窝直接共固化。另外,其玻璃布复合材料力学性能满足了技术指标要求,耐热性和耐湿热性良好,并已在飞机的结构件上得到应用。  相似文献   

14.
主要介绍了一种中温预固化耐热环氧树脂玻璃布复合材料,对树脂进行理化性能分析,采用热熔法制备预浸料,对玻璃布复合材料层压板进行性能测试.该树脂具有良好的耐热性和阻燃性,其预浸料可在125℃预固化,玻璃化温度达到155℃,完全固化后能达到245℃,耐热性能较好,该复合材料氧指数高,具有阻燃性.适合模具用复合材料或中温预固化...  相似文献   

15.
对3233中温固化环氧树脂黏度-温度曲线、凝胶时间-温度曲线和DSC进行了分析。采用热熔法制备了其碳布预浸料,通过热压罐法、模压法和真空袋法成型复合材料层合板,进行性能测试并对比。结果表明,3233中温固化树脂固化工艺为(125±5)℃固化90~120 min。采用热熔法制备的3233/CF3052中温固化环氧碳布预浸料具有良好工艺性能。模压成型和热压罐成型的层合板力学性能相当,略高于真空袋成型。3233树脂具有良好的韧性,夹层结构的抗滚筒剥离强度高,其预浸料可与蜂窝直接共固化。  相似文献   

16.
用E-51环氧树脂对酚醛型氰酸酯树脂(n-CE)进行增韧改性,研究了改性n-CE树脂体系的凝胶时间,采用示差扫描量热法(DSC)研究了改性n-CE树脂体系的反应活性及固化工艺,通过热重分析法(TGA)分析了不同含量E-51环氧树脂改性n-CE后固化物的热性能,并测定了体系的吸水率及力学性能。结果表明,随着E-51环氧树脂用量的增加,n-CE改性体系的反应活性逐渐提高,固化温度逐渐降低;体系的韧性增加;改性后材料的起始热分解温度均在300℃以上,吸水率均低于2%。  相似文献   

17.
采用EW180B斜纹玻纤布和一种中温固化高性能树脂制备预浸料。测试了EW180B斜纹玻纤布及其预浸料复合材料的性能,并与高温固化树脂相应玻纤布复合材料的性能进行了对比。结果表明,该中温固化高性能树脂复合材料的耐热和高温性能与高温固化树脂复合材料相当;其树脂体系是增韧改性环氧树脂,复合材料夹层结构的滚筒剥离强力高;且复合材料耐热性好,玻璃化转变温度(Tg)达200℃。  相似文献   

18.
采用核壳粒子增韧改性制备了一种可中温固化的环氧预浸料基体树脂,研究了增韧改性环氧树脂微观形貌、固化反应活性、耐热性、力学性能和黏温特性。结果表明,核壳粒子在树脂中均匀分散,固化树脂断裂面为银纹增多的韧性断裂。增韧后环氧树脂的力学性能有所提高,加入7%核壳粒子改性树脂的冲击强度达26k J/m2,改性基体树脂玻璃化转变温度为165℃。通过对树脂DSC曲线和黏温曲线的研究考察了基体树脂的使用工艺性,确定中温固化环氧基体树脂的固化工艺为:100℃/1h+130℃/2h。  相似文献   

19.
酚醛型环氧树脂改性氰酸酯共聚物固化反应动力学研究   总被引:2,自引:1,他引:1  
采用差示扫描量热法(DSC)对酚醛型环氧树脂改性双酚A型氰酸酯树脂的固化反应动力学进行了研究,用Kissin-ger方程计算出树脂的表观活化能,其计算值为60.81kg/mol,用Crane定理求得反应级数为0.8846.用外推法求得树脂体系的起始固化温度为120.00℃,峰顶固化温度为176.67℃,终止固化温度为226.67℃.由树脂的DSC和流变分析得到了合理的固化工艺,玻璃纤维织物/改性氰酸酯复合材料具有良好的力学性能.  相似文献   

20.
对低压成型钡酚醛树脂进行了性能表征,介绍了连续玄武岩纤维平纹布增强钡酚醛复合材料(CBFTC/BPF)的制备,同时研究了层压成型工艺对复合材料力学性能和烧蚀性能的影响。结果表明:当树脂质量分数(含量)为30%、预固化温度为120℃、固化温度为155℃、固化压力为3.5 MPa、固化时间为7.5 min·mm~(-1)时,CBFTC/BPF复合材料的力学性能和烧蚀性能最好,此时复合材料的弯曲强度为388 MPa,弯曲模量为30.3 GPa,线烧蚀率为0.100 3 mm·s~(-1),质量烧蚀率为0.079 1 g·s~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号