首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以NACA0018为基准翼型,采用Fluent数值模拟的方法,对比研究了襟翼相对长度和翼缝相对宽度对翼型流场结构及升、阻力特性的影响;分别选取襟翼相对长度分别为0.2、0.3和0.4和翼缝相对宽度分别为1.0%、1.5%以及2.0%,着重分析翼缝相对宽度对翼型气动性能的影响。数值结果表明,由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能。襟翼翼型的失速攻角在此次研究范围内均大于基准翼型,在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均高于基准翼型,但升力系数的最大值均高于基准翼型;随着襟翼相对长度增大,翼型临界攻角逐渐减小;在攻角接近翼型失速攻角时,升力系数先增大后减小;襟翼长度相同时,随着翼缝相对宽度的增大,升力系数逐渐减小。在翼缝流体入口端,主翼末端存在一个涡,随着翼缝相对宽度增大,该涡流范围逐渐扩大;在襟翼前端有局部的压力升高,随着翼缝相对宽度增大,该局部高压范围扩大。  相似文献   

2.
以NACA0018为基准翼型,采用Fluent数值模拟方法对比研究了襟翼相对长度(分别取0.2、0.3和0.4)和翼缝相对宽度(分别取1.0%、1.5%和2.0%)对翼型流场结构及升、阻力特性的影响,并着重分析襟翼相对长度对翼型气动性能的影响.结果表明:由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能;襟翼翼型的失速攻角在研究范围内均大于基准翼型;在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均大于基准翼型,但升力系数的最大值均大于基准翼型;随着襟翼相对长度的增大,翼型失速攻角逐渐减小;当攻角接近翼型失速攻角时,升力系数先增大后减小;襟翼相对长度相同时,随着翼缝相对宽度的增大,升力系数逐渐减小.  相似文献   

3.
翼缝是翼型主体与襟翼之间的缝隙,对翼型气动性能与流场结构有很大影响。以两段式NACA0018翼型为基础翼型,对传统弯曲翼缝进行改进设计与数值模拟,以期增大失速攻角及改善在大攻角下的气动性能。结果表明:在小攻角下,导叶翼缝襟翼翼型的升力较原始NACA0018翼型小,阻力较大,但在大攻角下,导叶翼缝可减小翼缝中流体的速度损失,为翼型上表面边界层提供更多动能,从而改善流场结构及失速特性,弯曲翼缝可增大1°失速攻角,而导叶翼缝可增大8°,攻角为18°时升力系数较弯曲翼缝提升43%。因此,导叶翼缝可极大地改善翼型在大攻角下的气动性能。  相似文献   

4.
以NACA0018为基准翼型,采用Fluent数值模拟的方法,对比研究了襟翼几何长度对翼型流场结构及升、阻力特性的影响;分别选取襟翼几何长度分别为0.2、0.3和0.4,翼缝相对宽度为1.5%,分析了襟翼几何长度对翼型气动性能的影响。结果表明,由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能。襟翼翼型的失速攻角在此次研究范围内均大于基准翼型,在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均高于基准翼型,但升力系数的最大值均高于基准翼型。  相似文献   

5.
陈涛  蒋笑  王海鹏  吴洲 《可再生能源》2020,38(6):765-770
文章通过数值模拟方法研究了不同相对厚度的前缘缝翼对S809翼型气动性能的影响,并揭示了前缘缝翼相对厚度对流动控制产生影响的机理。研究结果表明:在大攻角下,空气流经过前缘缝翼会在其尾部产生涡旋,尾缘涡旋的形成有助于抑制S809翼型流动分离,进而改善翼型绕流场;不同相对厚度的前缘缝翼产生尾缘涡旋不同的流动轨迹,对翼型的流动控制作用效果不同;相同条件下,前缘安装最大相对厚度为35%的前缘缝翼能够将S809翼型最大升力系数提升至1.25,失速攻角推迟至17.21°;安装最大相对厚度为14%的前缘缝翼,能够使S809翼型最大升力系数提升至1.53,并使翼型在攻角为20.16°时仍未发生失速。  相似文献   

6.
通过改变椭圆长短轴比来构造不同曲率的翼缝,并研究了翼缝开口宽度和不同曲率对垂直轴风力机功率系数和启动特性的影响.结果表明:在低尖速比、大攻角下弯曲翼缝翼型使流体重新附着于吸力面,有效延缓了流动分离,使扭矩波动减小,且扭矩系数较原始翼型显著提高;与原始翼型相比,弯曲翼缝翼型的最佳尖速比较低,风力机运行环境更加稳定.  相似文献   

7.
为了改善风力机大厚度翼型的气动性能,采用零质量射流对翼型附近的流动进行流动控制。采用非定常雷诺时均模拟方法(URANS)对动态失速状态下带零质量射流的DU97-W-300翼型的绕流场进行数值模拟,并对比控制前和控制后的翼型气动特性。结果表明,随着射流折合频率的增加,翼型失速攻角逐渐增大,升力系数曲线的波动次数逐渐减小。零质量射流可以有效抑制流动分离,其抑制动态失速的能力随翼型折合频率的增加而增强,随激励器动量系数的增加而增强。  相似文献   

8.
针对翼型失速问题,采用CFD(流体动力计算软件)数值模拟方法,以NACA0018为基准翼型,分析了不同翼缝宽度对翼型压力云图及流场等值线分布的影响。计算结果表明:当翼型处于小攻角时,翼缝宽度对翼型吸力面影响较小,对压力面高压区范围影响较大;当翼型处于大攻角时,翼缝的存在改变了翼型流场结构,减少了翼型尾缘处发展涡的数量,且缩小了涡的范围;在大攻角下,翼缝对翼型压力面高压区和吸力面低压区范围影响较大;对比三种不同翼缝宽度对翼型压力云图及流线等值线图可知,翼缝宽度w=0.1%c时,翼型水动性能最佳。  相似文献   

9.
利用数值模拟的方法,研究了翼犁失速及风速变化引起的雷诺数改变对风力机气动性能的影响.数值计算将k-ω的SST湍流模型与单方程的SA模型结合使用,以模拟大攻角范围的翼型绕流.结果显示:随攻角增大,上翼面分离会依次经历尾缘分离涡与前后缘交替脱落分离涡两个阶段,后者依据分离涡对下翼面压力分布有无影响又呈现两种不同情况,使得不同攻角范围失速时的流场形态及对气动性能的影响存在很大差异;雷诺数变化主要影响上翼面前后缘出现交替脱落分离涡时的攻角区域,且雷诺数越大,其变化引起的升阻系数变化越小.  相似文献   

10.
采用表面压力测量法,在小型回流式低速风洞中开展DU91-W2-250翼型在低雷诺数(Re3×10~5)条件下的气动特性实验研究,获得边界层自由和前缘固定转捩条件下翼型的升力系数、阻力系数和表面压力分布特性。在自由转捩条件下,翼型发生层流分离的临界雷诺数为1.7×10~5,且雷诺数越低,层流分离发生时的攻角越小。层流分离使得翼型升力系数和阻力系数发生跳跃性变化。通过在前缘增加粗糙带,强制边界层发生转捩,可消除前缘层流分离引起的失速,使翼型的气动力系数随攻角稳定变化。  相似文献   

11.
以应用在水平轴风力机叶片上的层流翼型S809为研究对象,采用CFD数值模拟技术,结合ShearStress Transport(SST)湍流模型,数值计算了S809翼型的升阻力特性。在翼型设计中应用一种转捩延迟控制技术——射流技术,即在翼型上翼面添加射流口,并研究了射流口位置和射流速度对翼型S809气动特性的影响。结果表明:射流技术能够显著提高翼型升力,延缓翼型失速;在低攻角下,射流速度大于来流风速才能提升翼型升力;在失速前,翼型的升力系数和失速攻角随着射流速度的增大而增大,在原始翼型失速而带射流翼型未失速阶段,带射流翼型的阻力系数明显小于原始翼型;射流速度一定时,射流口位置适当靠前可增大翼型的失速攻角,射流口位置布置在翼型上翼面中后部能使翼型在失速前获得较大的升力系数。  相似文献   

12.
以DU93-W-210风力机专用翼型为研究对象,采用风洞实验方法研究4组涡发生器(VGs)间距(S=5H、7H、13H、19H,H为VGs高度)对翼型气动性能的影响规律。风洞实验结果发现:在洁净翼型失速攻角(8°)之前,涡发生器对翼型的升力系数影响较小。而对于阻力系数及升阻比,当间距S=5H、7H时会使翼型的阻力系数增加,其中S=5H时阻力最多增加27%,升阻比降低19%。间距S=13H、19H时使翼型阻力系数降低,其中S=13H时阻力最多降低70%,升阻比最多增加160%;在翼型失速攻角(8°)之后,涡发生器均能增加翼型升力、降低阻力、增加升阻比,其中S=5H时翼型升力系数最多增加48%,增加失速攻角近10°,且在失速攻角之后,S=5H时翼型升阻比增加最多。故加装涡发生器不一定在全攻角范围内均增加翼型升阻比,但会增加翼型最佳升阻比的攻角范围。所以,涡发生器存在最佳间距,若从最大升力系数来判断,当间距S=5H时效果最佳。若从最大升阻比来看,当间距S=13H时效果更佳。  相似文献   

13.
为分析齿形襟翼(SGF)尾缘对风力机翼型气动性能及噪声特性的影响,利用SST k-ω湍流模型对装设Gurney襟翼(GF)和SGF的NACA0018翼型进行数值模拟,研究齿高和齿宽对气动性能和静压分布的影响,并采用大涡模拟(LES)对气动性能最优的SGF进行噪声预估和涡结构分析。结果表明:SGF可有效提高翼型升力系数并延迟失速;SGF-0.8-6.7模型可使最大升阻比提高8.61%,失速攻角延迟3°,其在拓宽高升力区间、延迟失速等方面具有最优性能;SGF翼型上下翼面噪声无明显差异,平均声压级随攻角增大而提高;SGF-0.8-6.7模型的尾迹噪声随攻角增大呈现先增后减的变化趋势,随距离增加而降低;翼型辐射噪声呈典型偶极子状,GF噪声小攻角下降低,而大攻角下则增大,SGF在不同攻角下均降噪显著,最大降噪量达10.2 dB;SGF尾涡稳定有序,能耗及损失降低,由此使气动性能和噪声得以明显改善。  相似文献   

14.
采用Fluent数值模拟的方法,以NACA0018对称翼型为基准翼型,分析了尾缘襟翼翼缝相对宽度不同时,襟翼动态摆动对翼型流场以及升阻力特性分析。选取襟翼相对长度为0.2,襟翼翼缝相对宽度分别为1.0%、1.5%和2.0%,当襟翼最大摆角θ为15°时,分析翼型动态气动性能。数值结果分析表明:襟翼的摆动导致原本对称的翼型不再是对称翼型,改变了翼型的弯度,翼型升力和阻力系数的最大值均增大;相同摆角下,翼缝相对宽度越大,其翼型升力系数值愈大;襟翼在摆角θ为10°~15°时,在襟翼下表面出现尾缘回流涡;当襟翼摆角θ为-10°~-15°时,襟翼上表面出现回流涡,且随着襟翼摆角的增大,该回流涡范围逐渐扩大。  相似文献   

15.
通过研究尾缘气动弹片对翼型动态失速特性影响,提出一种基于气动弹片的主动控制策略,使其于大攻角时抬起,小攻角时闭合。并采用计算流体动力学方法对比分析主动式气动弹片对不同厚度翼型抑制流动分离作用的效果。结果表明:对于薄翼型,发生动态失速时,气动弹片可延缓翼型尾缘涡旋与前缘主流涡的相互作用,减小翼型升力系数骤降幅度;随翼型厚度增加,流动分离点从翼型前缘转向后缘,气动弹片可有效分割较大分离涡,减轻流动分离程度,限制分离涡发展,同时抑制尾缘伴随小涡产生,提高翼型升阻比。  相似文献   

16.
针对低速航空翼型不完全适合垂直轴风力机的问题,采用复合形法对小型垂直轴风力机常用的NACA0015翼型进行了优化设计。在复合形法优化设计过程中,选取翼型的弯度和厚度作为设计变量,以翼型最大切向力系数Ctmax和失速攻角αs的加权和作为目标函数。将XFOIL程序与Viterna-Corrignan失速后模型相结合,计算出优化前后翼型气动性能参数。结果表明,与NACAOO15翼型相比,新翼型的气动性能有了较大提高,最大升力系数增大了33.5%,失速攻角提高了3°,最大切向力系数增大了43.5%。  相似文献   

17.
为得到高气动性能、低噪声的风力机专用翼型,基于参数化建模翼型,研究前缘外形对风力机翼型气动性能及气动噪声的影响规律。通过分离涡模拟方法和声学类比方程建立噪声预测方法。针对非对称翼型S809通过样条函数参数化处理前缘改形进行气动噪声计算。结果表明:翼型压力面前缘加厚,对翼型升阻力系数无明显影响,但大攻角时翼型周围压力分布均匀,流动相对稳定,且气动噪声声压级低于原始翼型,随压力面厚度增加气动噪声越大;吸力面加厚使得翼型升力系数增大,阻力系数减小,能抑制翼型失速时尾缘涡与前缘涡的生成,变形量越大气动噪声越小;翼型前缘上弯,翼型在失速区升力系数减小,阻力系数增大,流动越加不稳定,声压级随着攻角的增加呈递增趋势;翼型前缘下弯,翼型处于失速区升力系数增大,阻力系数减小,能抑制流动分离,未生成前缘涡和尾缘涡,当前缘下弯不变时,随加厚厚度增加翼型声压级呈减小趋势,且前缘下弯翼型声压级小于前缘上弯。  相似文献   

18.
胡煜  黄胜羡  王莹 《热能动力工程》2021,36(12):134-141
针对适用于垂直轴风力机的叶片,以NACA0012作为基准翼型,采用DES湍流模型,在来流雷诺数Re=1×106的情况下进行了等厚度翼型中弧线主动变形运动的数值模拟研究。选用弦长c=0.601 m,展向长度B=1 m,攻角α为15°(浅失速攻角)和18°(深失速攻角),变形频率f为0.5,2和5 Hz,变形幅值A〖DD(-*2〗-〖DD)〗为0.1c的参数条件,对比变形翼型与不变形翼型的气动性能。研究表明:在深失速攻角下变形翼型相较于不变形翼型,其升力系数提升52%以上,阻力系数减小64%以上,气动性能可得到有效提升,且变形翼型在特定工况下能有效减小翼型表面分离区及分离涡尺度。  相似文献   

19.
采用计算流体力学方法,研究了主流风速为10 m/s,翼型弦长雷诺数为1.2×10~5条件下振动膜片对NACA0012翼型在18°攻角深失速下流动分离的影响。研究表明:振动膜片能明显提高翼型升力系数、降低阻力系数、改善流场状况;当无量纲频率处在1~1.5范围内时,翼型升阻比可大幅提升,最大可提高75.7%;无量纲振幅对翼型升阻比的影响也很显著,相对于原型存在一个最佳的振幅使得翼型升阻比能获得最大提升;不同振幅下,最佳升阻比对应的无量纲频率随振幅增大而减小。  相似文献   

20.
通过数值模拟计算不同攻角(2°~30°)下弹片抬起角度的气动性能和噪声特性,确定某攻角下的最佳弹片抬起角度。计算结果表明:与原始翼型相比,附加气动弹片翼型在失速攻角之后升阻力系数明显减小,失速攻角也延迟了约2°;气动弹片的存在一定程度上延缓分离点向前缘方向发展,且上表面较大分离涡被分割成尺度较小的涡,相应分离区域也有所减小。小攻角下,气动弹片的存在破坏了附着流动,导致升力下降而阻力增大,攻角增大,弹片开始产生积极效果;弹片最优角度很大程度上跟攻角有关,弹片角度变化对气动性能的影响并非线性的,而是在某角度存在最优。攻角越大,弹片最优角度越大;小攻角下弹片抬起亦会增大翼型噪声声压级,且抬起角度越大,产生的负面影响越严重;弹片产生效果之前,噪声指向性声压级随弹片角度增大而增加,产生效果后,指向性分布声压级呈先增后减趋势,约在最佳弹片角度下效果最好;翼型噪声指向性分布呈现明显偶极子特性。研究结果为提高风力机翼型的气动性能和降低噪声水平提供理论指导和实现途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号