首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用有限元分析软件建立封隔器胶筒模型,分析单一轴向载荷和轴向、扭转载荷共同作用下,胶筒与套管之间的接触应力及其沿轴向的分布规律,最大接触应力随胶筒端面角、子厚度、筒高3个结构参数和摩擦因数的变化,以及施加不同扭转载荷时对胶筒密封性能的影响。研究结果表明:在单一轴向载荷作用下,最大接触应力随倾斜角度增大先减小后增大,随子厚度的增加先增加后减小,随筒高的增加而减小,随摩擦因数增大先减小后增大;施加扭转载荷后,不同端面角、子厚度、筒高下胶筒的最大接触应力整体降低且波动较大,随摩擦因数增大胶筒接触面之间的摩擦力增大,加速了胶筒磨损和老化;不同扭转载荷作用下胶筒最大接触应力值波动较大,导致密封性能不稳定。因此,扭转载荷使得胶筒密封性降低,导致最大接触应力波动较大,使胶筒的密封性能存在不稳定性。  相似文献   

2.
李斌 《润滑与密封》2018,43(4):94-98
为了提高封隔器的密封性能,设计一种沿径向对称的梯形隔环和槽形胶筒组构成的新型密封结构,运用有限元分析方法模拟封隔器的工作状况,分析梯形隔环结构特性参数对封隔器密封性能影响,获得不同梯形隔环结构参数下封隔器胶筒组与套管壁间接触应力分布规律,并对新型密封结构进行优化。结果表明:新型密封结构选择梯形隔环中心线距离隔环端面距离10 mm、梯形隔环下底高9 mm、梯形隔环上底高8 mm,梯形隔环高度9 mm的特性参数时,其最大接触应力比常规密封结构提高了约84%。新型密封结构的胶筒组与套管壁的接触应力比常规封隔器有显著提高,提高封隔器的密封性能。  相似文献   

3.
为探讨深水测试双封隔器由密闭环空压力变化引起的变形与强度问题,建立双封隔器胶筒结构的力学分析模型。根据工作过程中封隔器间密闭环空压力的变化,对胶筒的密封性能进行分析,得到各胶筒的应变量、等效应力以及接触应力的变化情况。分析采用胶筒不同圆形倒角参数时封隔器胶筒与套管的接触特性,研究胶筒倒角参数对封隔器密封性能的影响,得出封隔器的优化结构参数。结果显示:各胶筒的应变量、等效应力以及接触应力均随密闭环空压力的增大而增大,其中下胶筒的增大幅度最明显;各胶筒变形量随着胶筒倒角的增大无明显变化,但等效应力随着胶筒倒角的增大均减小,而随着胶筒倒角的增大上胶筒和中胶筒的接触应力均增大,下胶筒的接触应力先增大后减小。因此,一定程度上增大胶筒倒角有利于提升封隔器的密封性能,倒角半径为0.75 mm时为最优结构。  相似文献   

4.
双梯度钻井技术可解决深海油气和浅层水合物开发面临的疏松表层安全钻进和地层漏失压力低等难题。为研究双梯度钻井套管内压力隔断封隔器胶筒的力学性能,利用有限元仿真软件,分析不同摩擦因数、胶筒厚度、工作压力、环空间隙等因素作用下对胶筒变形的影响。采用正交试验对四种因素作用下胶筒的最大Mises应力值与接触压力值进行极差分析。结果表明:摩擦因数为0.3时胶筒与套管间接触压力取得较大值,双梯度钻井封隔器胶筒厚度优选为15 mm;在有效封隔2 MPa工作压力前提下,得出封隔器胶筒随钻柱滑动的最小摩擦力33 845 N;影响胶筒最大Mises应力的主要因素为工作压力与环空间隙,影响胶筒与套管间最大接触压力的主要因素为工作压力与胶筒厚度。  相似文献   

5.
《机械强度》2017,(3):727-731
水平井裸眼分段压裂完井技术的核心工具之一是压缩式裸眼封隔器,由于封隔器处于高温、高压、复杂深部地层环境,常出现坐封压力低、坐封提前失效,主要原因是封隔器的密封结构不合理,胶筒与井壁间的接触应力低。基于弹性力学理论,推导出封隔器胶筒坐封时受到的最大接触压力,并提出了一种新型压缩式裸眼封隔器四胶筒组合的密封结构,利用Abaqus对比分析了常规和新型组合胶筒在相同条件下的接触应力分布规律,并对新型组合胶筒的端面斜角进行了优选,研究了摩擦因数对新型组合各胶筒接触应力的影响。分析表明,新型四胶筒组合封隔器能更加有效的将坐封压力传递给密封胶筒,使胶筒的接触应力显著提高且分布均匀,保证了胶筒密封的可靠性。  相似文献   

6.
利用有限元分析软件建立了封隔器双胶筒模型,分析了在58.15 MPa工作载荷下,不同环境温度对双胶筒与套管之间接触应力的影响规律。考虑压裂封隔器的高温工作环境,分析了在100℃作业温度时,上、下胶筒不同筒高对双胶筒密封性能的影响。研究结果表明,轴向载荷不变时,随温度的升高,双胶筒的密封性能也随之提高,并在100℃时上、下胶筒与套管间密封性能达到最佳,施加载荷端胶筒承担主要的密封作用。当上、下胶筒筒高相等且高度为70 mm时,上胶筒与套管间的接触应力达到最大值66.72 MPa,且上、下胶筒沿轴向的接触应力分布均较平坦,此时双胶筒的密封效果最好。上、下胶筒筒高不等时,相较于上胶筒筒高大于下胶筒筒高的情况,上胶筒筒高小于下胶筒筒高时,上、下胶筒的接触应力沿轴向均呈现较平缓的变化趋势且整体密封性能高。当上、下胶筒筒高分别为40 mm和100 mm时,双胶筒的密封效果最好。  相似文献   

7.
针对水平井压缩式裸眼封隔器存在的密封性差、坐封力低、胶筒与井壁间存在间隙等问题,对其密封结构进行改进与优化,设计出一种凸球形隔环和凹球形胶筒组相结合的新型密封结构。运用 ABAQUS 软件模拟密封结构封隔器胶筒的坐封情况,获得胶筒组轴向接触压力的分布规律,并分析胶筒硬度和摩擦因数对接触压力的影响。结果表明:新型密封结构凸球形隔环在轴向压缩胶筒的同时也起径向压缩作用,提高了胶筒与井壁和中心管间的接触压力,增强了封隔器的密封性能;胶筒与井壁间的接触压力随着胶筒硬度和摩擦因数的增大而增大,但过大的摩擦因数会导致下胶筒接触压力明显减小,应选择硬度和摩擦因数合适的胶筒,从而保证封隔器的密封可靠性。  相似文献   

8.
《机械强度》2016,(5):1029-1034
为研究胶筒与套管之间摩擦接触问题,运用MMW-1型立式万能摩擦磨损实验机对胶筒与套管之间摩擦因数进行了测定;以测定数据为依据,基于橡胶材料Mooney-Rivlin模型,采用罚函数与库伦摩擦原理,考虑橡胶大变形非线性,对胶筒与套管摩擦接触问题进行了数值模拟。结果表明:接触面在无润滑剂下的摩擦因数最大,为0.515,油基润滑下最小,为0.122,其余润滑条件下介于0.122~0.515之间;随着摩擦因数的增大,摩擦应力逐渐增大,接触压力逐渐减小,胶筒等效应力先增大后减小,摩擦因数为0.3时,可以得到较好的接触压力;随着轴向载荷的增大,接触压力、摩擦应力及胶筒等效应力逐渐增加;在轴向载荷不变下,胶筒厚度对接触问题影响较大;最后对胶筒的结构进行了优化设计,得到全段圆弧设计为更好的胶筒结构。  相似文献   

9.
利用罚函数法将接触面约束条件引入势能泛函,建立封隔器胶筒有限元方程,采用Newmark法进行数值求解,分析封隔器胶筒几何参数和物理参数对封隔器密封性能的影响。研究结果表明:胶筒与套管间接触压力随胶筒长度的增加而增大,这种增长趋势在胶筒长度达到一定数值后趋于减缓;胶筒与套管间接触压力随胶筒厚的增加而增大,而压缩变形随胶筒厚度增加而逐渐减小;胶筒的材料参数设计要求在满足密封要求的前提下,选择较大的胶筒材料系数。  相似文献   

10.
以深海推进器等水下设备用机械密封为研究对象,建立机械密封环模型,考虑深海变工况下接触端面摩擦因数的差异性,采用分离法分别对机械密封动、静环端面进行热-力耦合变形分析,并对分别考虑密封环热变形、力变形、热-力耦合变形的分析结果进行比较。结果表明:接触端面摩擦因数大小与介质压力、转速、液膜厚度等因素有关,端面摩擦因数随介质压力增大而减小,随转速增大而增大,随液膜厚度增大而减小;单一力变形、热变形分析与热-力耦合变形分析结果差别较大,热-力耦合分析结果要比单一变形分析更接近实际、分析更准确;瞬态工况下,端面温度及端面接触应力峰值均出现由外向内的变化趋势,端面接触状态受端面温度分布影响明显。  相似文献   

11.
封隔器参数的选取对其工作性能至关重要,合理选择胶筒的形状尺寸可有效避免因应力集中、残余变形而导致的密封失效或起出困难。讨论了密封胶筒端面倒角、胶筒长度对接触应力的影响,进而分析两者对胶筒密封性能的影响。结果表明,40°~50°区间的倒角有助于提高胶筒与套管内壁之间的接触应力;增加密封胶筒长度,会造成接触应力下降。  相似文献   

12.
封隔器是油田采油中重要的井下工具之一。封隔器的工作好坏,密封是关键。胶筒与套管之间的接触应力的大小,可以直接反应出封隔器的密封能力,接触应力越大,封堵压差的能力就越高,密封效果最好。采用非线性有限元分析方法,对封隔器胶筒与套管之间的接触应力进行研究,并对胶筒的壁厚进行了结构优化。综合考虑封隔装置受挤压后的变形过程和受力过程,得到此型号封隔器胶筒的最优壁厚。将最优胶筒壁厚的有限元分析结果与地面实验结果进行比较,前者可行有效,且具有较好的工程应用价值。  相似文献   

13.
陈波  杨晓  涂庆 《润滑与密封》2019,44(3):92-98
采用ABAQUS软件建立帽形滑环式组合密封有限元模型,研究不同工作压力、密封间隙、运动速度和摩擦因数对其密封性能的影响规律。研究结果表明:静密封工况下,活塞杆与O形圈间的最大接触应力是影响密封性能的关键因素,随着工作压力的增大或密封间隙的减小,O形圈与帽形滑环的最大Von Mises应力均逐渐增大,各表面间的接触应力也逐渐上升;动密封工况下,工作压力越大、密封间隙越小,接触应力越大,密封间隙为0.3 mm其动密封性能最优,而随摩擦因数的增大,接触应力总体呈上升趋势,运动速度则对于接触应力基本无影响。  相似文献   

14.
以三胶筒封隔器为研究对象,应用ANSYS有限元软件建立了封隔器密封元件的计算模型,分析了不同坐封载荷下胶筒的变形、胶筒与套管接触压力的变化规律。计算结果表明,弹性模量相对较小的中胶筒首先与套管接触,其次是靠近载荷施加端的胶筒与套管接触,远离载荷施加端的胶筒最后与套管接触。三段胶筒与套管的接触压力都随坐封载荷的增大而增大,在不同坐封载荷下,靠近载荷施加端的胶筒与套管的接触压力均大于中间胶筒和远离载荷施加端胶筒的压力,靠近载荷施加端的胶筒与套管的接触压力越大,封隔器的密封性能越好。  相似文献   

15.
封隔器胶筒大变形的粘-滑摩擦接触分析   总被引:2,自引:0,他引:2  
采用罚函数方法,结合橡胶大变形问题的增量分析过程,考虑封隔器胶筒与套管之间的粘-滑摩擦接触问题,研究摩擦因数变化对接触压力的影响规律。给出解决封隔器胶筒摩擦接触问题的数值方法,并在此基础上对胶筒与套管之间的摩擦接触进行有限元分析,分析得到采用大变形非线性粘弹性理论和接触摩擦描述的有限元模型,可以比较准确模拟封隔器在坐封和工作过程中胶筒接触压力和变彤的情况,结果表明,摩擦因数变化对封隔器胶筒的接触压力有着较明显的影响。  相似文献   

16.
利用ABAQUS分析软件建立封隔器胶筒的有限元模型,分析相同工作载荷及不同工作温度下,胶筒与套管间接触应力及其沿轴向的分布规律;分析升温和降温2种情况下温度对胶筒密封性能的影响,以及考虑胶筒发生扭转时温度对密封性能的影响。结果表明:轴向载荷不变时,随着温度的升高,胶筒的密封性能也随之提高;升温时,除起始温度低于0℃以外,其各温度下升温的温差幅度越大,胶筒的最大接触应力增加幅度越大,胶筒的密封效果越好;降温时,降温的温差幅度越大,胶筒的最大接触应力减小的幅度越大,胶筒的密封性能越差;小角度扭转载荷下,作业温度的升高将提高胶筒的密封性能,但会降低胶筒密封的稳定性。  相似文献   

17.
为探讨封隔压差和封隔间隙对封隔器胶筒封隔性能的影响,应用有限元分析软件,研究不同封隔压差和间隙下胶筒的Von Mises应力分布、胶筒与套管壁间接触应力的分布以及胶筒的变形情况。结果表明:随着封隔压差的增大,胶筒上端部的Von Mises应力值不断增大,胶筒失效的可能性增加,但胶筒与套管壁的接触应力值增大,胶筒的封隔能力增强;随着封隔间隙的增大,胶筒上端Von Mises应力值增大,胶筒剪切失效的可能性增加,且胶筒与套管壁的接触应力减小,胶筒的封隔能力下降。设计出一种蜗形状防突装置,分析其对胶筒封隔性能的影响。结果表明:蜗形保护环能有效地防止胶筒端部突出,且胶筒的应力分布更均匀,胶筒与套管壁间的接触应力值更大,提高了胶筒的封隔能力。  相似文献   

18.
封隔器胶筒大变形摩擦接触的有限元分析   总被引:3,自引:0,他引:3  
关于封隔器胶筒接触压力的求解,目前文献所给出的计算公式均没有考虑摩擦因数对封隔器胶筒接触压力的影响,而摩擦因数对接触压力有较明显的影响。针对胶筒与套管之间的粘-滑摩擦接触问题,采用罚函数技术,结合橡胶大变形问题的增量分析过程,给出解决封隔器胶筒摩擦接触问题的数值方法,并在此基础上对胶筒与套管之间的摩擦接触进行有限元分析。计算结果表明,采用大变形非线性粘弹性理论和接触摩擦描述的有限元模拟技术,可以比较准确地模拟摩擦因数对封隔器胶筒接触压力的影响,所得的结果比经典理论公式的分析结果的精度更高,具有理论价值和工程应用价值,可为胶筒的优化设计提供一定的依据。  相似文献   

19.
为探讨封隔压差和封隔间隙对封隔器胶筒封隔性能的影响,应用有限元分析软件,研究不同封隔压差和间隙下胶筒的Von Mises应力分布、胶筒与套管壁间接触应力的分布以及胶筒的变形情况。结果表明:随着封隔压差的增大,胶筒上端部的Von Mises应力值不断增大,胶筒失效的可能性增加,但胶筒与套管壁的接触应力值增大,胶筒的封隔能力增强;随着封隔间隙的增大,胶筒上端Von Mises应力值增大,胶筒剪切失效的可能性增加,且胶筒与套管壁的接触应力减小,胶筒的封隔能力下降。设计出一种蜗形状防突装置,分析其对胶筒封隔性能的影响。结果表明:蜗形保护环能有效地防止胶筒端部突出,且胶筒的应力分布更均匀,胶筒与套管壁间的接触应力值更大,提高了胶筒的封隔能力。  相似文献   

20.
利用ANSYS建立T形滑环组合密封的二维轴对称有限元模型,将密封结构划分为4个密封区域,研究静、动密封状态下介质压力、密封间隙、摩擦因数和T形滑环斜边与垂直线之间的角度,对组合密封圈密封性能的影响。仿真结果表明,T形滑环组合密封可以满足研究的压力范围下的静、动密封要求。其最大Von Mises应力和最大接触应力随介质压力增大而增大,随密封间隙增大而减小;最大Von Mises应力和最大接触应力随滑环斜边与垂直线之间角度增大而增大,当角度为2.5°~7.5°时,组合密封可达到密封要求且滑环不易磨损;摩擦因数越小,组合密封动密封性能越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号