首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为测算不同水文水质条件下东洞庭湖动态纳污能力,利用2003—2016年MODIS遥感数据和实测水文数据建立水位-面积-湖容关系模型,提取不同水位、入湖流量、入湖水质条件下的纳污能力计算参数,参照《水域纳污能力计算规程》测算出不同水文水质条件下的东洞庭湖动态纳污能力系数以及COD、氨氮的动态纳污能力。研究结果表明:东洞庭湖纳污能力随着水位、流量、水质而动态变化,COD最小纳污能力为14 200 g/s,大于2016年年均排放强度1 837 g/s,不存在水质超标风险;氨氮最小纳污能力43 g/s,小于2016年年均排放强度275 g/s,水质超标风险大;明确了导致氨氮超标的水文、水质条件,认为氨氮入湖浓度<0.95 mg/L时,湖泊氨氮不超标。主要结论为:①水位-面积-湖容关系模型可为测算湖泊动态纳污能力提供支撑;②建议根据动态水域纳污能力确定污染物排放量,科学利用水环境容量;③东洞庭湖入湖氨氮浓度应控制在0.95 mg/L以下,以保证水质达标。研究成果对维护和改善洞庭湖水环境质量具有重要的现实意义。  相似文献   

2.
以陕西省引汉济渭工程受水区退水河流为研究对象,基于河流水文条件、退水量及其污染物入河量等因素,针对受水区水域纳污能力开展研究,并核定退水量波动对纳污能力的影响。根据渭河流域3种设计流量,综合分析渭河枯期流量特性及设计流量与实际水文特征的关联性,确定近10 a最枯月平均流量对应的水域纳污能力。结果表明:在考虑不同用水单元废水排放系数的波动性条件下,退水条件变化对纳污能力的计算结果影响较大;引汉济渭工程调水后2025年受水区纳污能力较2015年明显增强,其中河流污染物COD和氨氮纳污能力相较2015年分别提高了12.4%和17.0%。  相似文献   

3.
针对北洛河污染严重问题进行干流水域纳污能力计算和对策研究。通过水环境现状、污染物入河量、河流水文条件、污染物衰减系数等方面调查分析,以90%保证率最枯月平均流量为设计流量,按照一维模型计算出北洛河干流水域纳污能力。结果表明,COD_(cr)纳污能力为2648.2 t/a,氨氮纳污能力为215.3 t/a,远小于北洛河现状的COD_(cr)和氨氮入河量。根据计算出的结果提出加强对下游地区排污口管理,加大污染物削减力度等措施。该结果可为北洛河水资源保护、排污整治提供依据。  相似文献   

4.
太湖流域省际边界地区入河污染物总量控制   总被引:2,自引:1,他引:1  
通过评价太湖流域省际边界地区水环境状况,分析区域污染源情况。在此基础上,采用水量水质模型核算该地区水功能区纳污能力。结果表明:该区域现状COD、NH3-N污染负荷量分别为11.07万t/a7、124 t/a,而该区域COD和NH3-N的纳污能力分别为8.07万t/a和4 009 t/a,现状COD和NH3-N的污染负荷分别是水域纳污能力的1.4倍和1.8倍,超过该区域水环境的承载能力。最后确定了污染物限制排污总量,提出了水资源保护建议。  相似文献   

5.
依据《江苏省水功能区划》,结合吴江市水资源质量及污染现状,采用一维非稳态模型确定水质参数,计算吴江市水功能区纳污能力,核定限排总量,与吴江市现状污染物入河量对比,确定污染物削减量,为吴江市水污染防治与污染减排工作提供方法和依据。结果表明:吴江市水功能区水域纳污能力CODCr和氨氮分别为17 344和1 672 t/a,为入河量的56%和57%,CODCr和氨氮的平均削减率分别为54%和56%,该结果与污染物入河量、水质超标率结果基本吻合,说明纳污能力与限排总量计算结果合理。  相似文献   

6.
根据大连市水功能区水质现状评价结果 ,选取达标率较低的复州河、大沙河作为研究对象,化学需氧量、氨氮为主要污染指标,选定相应的水质模型,设计参数,计算重点河流的水体纳污能力,并计算入河污染物的控制排放总量。结果表明:复州河水体纳污能力化学需氧量和氨氮分别为823.36t/a和40.55t/a,大沙河水体纳污能力化学需氧量和氨氮分别为2 021.67t/a和89.02t/a。  相似文献   

7.
千岛湖现状污染负荷分析与限制排污总量研究   总被引:2,自引:0,他引:2  
根据千岛湖水质现状和水功能区划,确定2015年和2020年千岛湖水质保护目标的污染物浓度,核算现状污染负荷量。将现状CODMn、NH3-N和TP污染负荷量作为千岛湖CODMn、NH3-N和TP的纳污能力,即千岛湖湖区CODMn、NH3-N和TP指标纳污能力分别为16420 t/a、2225 t/a和434 t/a。采用狄龙模型核算千岛湖TN指标的纳污能力,2015年千岛湖TN质量浓度目标值为0.88 mg/L,对应湖区限排总量为3468 t/a;2020年将千岛湖TN质量浓度目标值进一步提高至0.8 mg/L,此时对应湖区TN限排总量为3176 t/a。  相似文献   

8.
利用环太湖水文巡测资料和湖西区、澄锡虞区主要入湖口门水质资料,对2000年前后的太湖水环境进行对比分析。结果表明,2000年以来太湖湖西区和澄锡虞区由于受引长江水的影响,入湖水量大增,导致河网污染物大量入湖,使输入太湖的污染物量远远超过其本身的纳污(自净)能力,太湖富营养化有加剧的趋势。建议严格强化陆域控源减排,优化"引江济太"调度方案,适度控制引长江水量,以减少竺山湖、梅梁湖、太湖西部沿岸区乃至整个太湖的污染物入湖量。  相似文献   

9.
江苏省淮河流域纳污能力浅析   总被引:5,自引:2,他引:5  
依据江苏省水功能区的水质保护目标要求 ,对现状水资源质量进行评价 ,结果表明 ,江苏省淮河流域最突出的超标污染指标为CODCr和NH3 N。用小型湖泊、水库纳污能力计算模型和中小河道纳污能力计算模型 ,对江苏省淮河流域部分湖泊和河道的纳污能力、污染物削减量、总量控制目标进行计算分析 ,并提出目标水平年的污染物削减量和污染物的入河控制量。  相似文献   

10.
水功能区纳污能力是指在设计水文条件下,某种污染物满足水功能区水质目标要求所能容纳的该污染物的最大数量。浙江省主要水域共划分了1 133个水功能区,包括了山区性河流、湖泊水库、平原河网、感潮河段等水体类型,对不同水体类型纳污能力计算中模型选定、模型参数选择、设计水文条件确定等关键环节进行了初步探讨,并核定了全省水功能区的纳污能力。  相似文献   

11.
水功能区纳污能力及限制排污总量研究是东江源区水资源保护规划的重要工作内容.根据《江西省地表水(环境)功能区划》和《赣州市地表水功能区划》,结合东江源水质现状、污染源类型及特点,分别采用一维、二维非稳态模型和湖库均匀混合衰减模型计算源区水功能区纳污能力,核定限排总量:(1) COD和氨氮纳污能力分别为1 246. 23 t/a和103. 35 t/a;(2) COD和氨氮限排总量分别为819. 24 t/a和97. 84 t/a;(3) COD现状入河量为1 235. 40 t/a,氨氮现状入河量为1 116. 60 t/a,COD和氨氮入河量削减率分别为34. 37%和91. 89%,需削减污染物的功能区有17个,占全部功能区的比例为94%.东江源区主要污染指标为氨氮,削减量较大的是寻乌水寻乌保留区,污染源为矿坑迹地,寻乌和定南城区河段的工业污染也较为严重,源区内2个工业用水区均需大幅削减排污量.研究成果可对东江源区水污染防治工作提供借鉴.  相似文献   

12.
依据<河北省水功能区划>,以COD和NH3-N为控制指标,根据入河排污口分析评价结果,合理确定水质模型和水质目标、设计流量等相关参数,应用水质模型计算了水功能区水域纳污能力和应削减量.结果表明,河北省水功能区水域纳污能力COD和NH3-N分别为7.76万t/a和0.34万t/a,仅为现状入河量的21.7%和8.1%;C...  相似文献   

13.
通过对西安市境内主要河流基本情况的分析,在给定河流水功能区现状的和规划的水质目标、设计流量、污染物综合衰减系数以及水质背景条件下,采用一维水质模型核算了河流水功能区的纳污能力;在调查分析现状年河流水环境状况和污染物入河量的基础上,预测了规划年生活和工业污染物的排放量和入河量;根据计算的纳污能力和污染物入河量,提出了规划年河流水功能区的污染物入河量控制方案,为西安市河流污染治理和水资源保护提供技术支撑。结果表明:规划年黑河污染物入河削减量任务最轻,COD入河削减量均为0,氨氮入河削减量2020年为1.6 t,2030年为0.6 t。灞河最为繁重,COD入河削减量2020年达到4215.2 t;2030年达到4401.8 t;氨氮2020年入河削减量达到624.5 t;2030年达到696.8 t。  相似文献   

14.
湖泊纳污能力动态特征分析及计算   总被引:3,自引:0,他引:3  
受天然因素和人工调控的综合作用,湖泊水文过程和其他自然因子显现出动态变化的特征,这些因子的变化直接影响着纳污能力的动态变化,同时水体污染源也具有明显的时间变化特征。本文分析了湖泊纳污能力的动态特征,提出选择典型水文年和将湖泊与人湖河道作为一个整体进行模拟是进行湖泊动态纳污能力计算的关键。以枯水年作为代表水文年,采用二维数学模型进行太湖纳污能力动态变化的模拟,得到了纳污能力总量和逐月的量值。该研究对提高湖泊水库污染物总量控制的适应性具有一定的意义,也可供河流纳污能力研究进行参考。  相似文献   

15.
在对汾河水质、入河排污量监测的基础上,选取计算模型及相关参数,以掌握汾河复流前后水环境承载能力为主要目的,以各水功能区为基本计算单元,分析计算水功能区不同来水条件下的水域纳污能力,进而提出汾河复流后各行政分区的污染物限排总量及污染物削减率。结果表明:复流后各功能区COD和NH3-N限制排污总量分别为25 139 t/a和1 158 t/a,污染物削减量分别为24 704t/a和7 857 t/a,平均削减率分别为49.6%和87.2%。若各入河排污口达标排放后,COD、NH3-N仍要削减15 936 t/a和4 356 t/a。  相似文献   

16.
王成见  孟春霞  王琳  孙宝权 《治淮》2010,(12):42-44
本文以青岛胶南市为例,在分析了胶南市水文气象、入河排污口水质资料的基础上,研究了胶南市河流的水文规律以及河道拦河闸的水力特性,针对季节性河流具有河道、水库双重水力特性的特点,综合采用河道、水库纳污能力计算模型计算河道、拦河闸的纳污能力并提出限制排污总量意见。计算结果显示:拦河闸坝纳污能力贡献率达到41%;现状入河排放量远大于河道纳污能力,COD和氨氮削减量分别为2933.34t/a和260.76t/a,占总排放量的95.7%和98.9%,削减任务相当艰巨。  相似文献   

17.
张鹏飞  陆健刚 《人民长江》2016,46(14):23-25
水体纳污能力的计算是河流污染物总量控制及水环境管理的基本依据。在统计湘江流域污染物排放量的基础上,选用一维河流水环境数学模型,按照流域内各水功能区水质目标要求,计算得出湘江会昌流域段水体纳污能力,并与现状污染物排放量进行了对比。结果表明:湘江会昌段CODcr、NH3-N、TP纳污能力分别为6 862.83,1 559.96,208.31 t/a,湘水会昌工业用水区CODcr、NH3-N削减量分别为239.67,90.07 t/a,削减率分别为25.12%,50.75%;湘水寻乌-会昌保留区TP削减量为72.51 t/a,削减率为29.5%。  相似文献   

18.
为保证京杭运河五牧断面的水质达标率及水体环境健康,依据《江苏省地表水(环境)功能区划》,综合考虑水文、水体污染来源等因素,对整治范围内入运河的污染源进行概化,通过建立一维水量水质数学模型确定模型参数,计算五牧断面水质达标时各概化排口的允许排污量,进而得到该研究区域的水环境容量,与现状污染物入河量对比,确定污染物削减量,为改善京杭运河水环境质量提供依据。结果表明:确保京杭运河五牧断面水质达标情况下,研究区域近期COD、氨氮、总磷水环境容量分别为47 216t/a、5 376.1 t/a、508.1 t/a,远期COD、氨氮、总磷水环境容量分别为28 977.3 t/a、2319.1 t/a、301.1 t/a。污染物削减率与水质超标率对比二者差距在30%以内,说明水环境容量计算结果基本合理。  相似文献   

19.
水资源保护与纳污总量控制   总被引:1,自引:0,他引:1  
在讨论水资源保护的总体思路和技术路线的基础上,阐述了水资源保护规划中水功能区划分、水功能区纳污能力及污染物入河控制量核算等几个关键技术问题.在开展水功能区划分时,应充分考虑水体的自然状况和经济社会发展情况,合理划分水功能区,并确定其使用功能及水环境质量目标.水体纳污能力核算应根据不同水功能区类型及其水环境质量现状采用不同的方法开展.采用数值模型核算水功能区纳污能力时,应根据水体状况,选择合理的模型方法及相关参数.在实际工作中,应根据水功能区纳污能力和污染物入河量,综合考虑水功能区水质状况、当地技术经济条件和经济社会发展,核定不同规划水平年的污染物入河控制量.  相似文献   

20.
抚仙湖是中国最大的深水型淡水湖泊。随着流域入湖污染负荷的增加,其整体水质呈下降趋势,水污染呈自北向南和自沿岸向湖心推进的分布特征。本文依据水质-污染源响应关系,建立了基于湖泊水动力水质模型的水环境承载力计算方法;在对湖泊水动力和水质模型率定验证的基础上,计算得到了抚仙湖在规划水质目标(I类)下,CODMn、TN和TP这三类主要污染物的水环境承载力分别为20065.7 t/a、821.9 t/a和115.8 t/a;并根据抚仙湖环湖入湖河流及排污口分布特征,进一步提出了环湖分片主要污染物容许入湖负荷及污染物总量控制指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号