共查询到20条相似文献,搜索用时 15 毫秒
1.
为评价航空发动机金属弹性密封圈在全工况下的性能,研制一种可模拟金属弹性密封圈全工况条件的多功能试验台,该试验台可实现受轴向加载的金属弹性密封圈的高温密封试验,能完成精确模拟压缩量的弹性试验以及轴向载荷谱加载的疲劳试验等,为评价金属弹性密封圈性能提供试验手段。采用该试验台对某W形封严环进行密封、弹性、疲劳试验。试验结果与样件产品的性能参数相当,并在试验中实现了精确模拟压缩量以及轴向载荷谱的加载。 相似文献
2.
O形密封圈偏心情况下接触应力仿真研究 总被引:1,自引:0,他引:1
研究O形密封圈在偏心情况下采用二维模型计算接触应力结果的准确度。通过利用有限元分析软件ABAQUS对O形圈的偏心情况进行二维和三维数值仿真分析,针对不同O形圈直径在不同偏心量的情况下分别进行接触应力的二维和三维计算与对比。结果表明:在O形密封圈偏心的情况下,与三维模型相比,二维模型计算的接触应力在最大压缩量处往往偏大,在最小压缩量处往往偏小,且偏心量的增大和O形圈直径的减小均导致二维模型的计算误差增大。对二维模型接触应力计算误差随偏心量和O形圈直径的变化曲线分别进行拟合,得到二维模型接触应力计算误差的预测公式,可用于O形圈二维模型接触应力预测值的修正。 相似文献
3.
4.
5.
有限元法在液压缸Y形密封圈接触应力分析中的应用 总被引:6,自引:0,他引:6
应用有限单元方法计算了Y形密封圈在不同工作压力下的变形、应力及其分布情况,获得了该型密封圈与液压缸 筒接触面之间接触应力的分布规律以及接触应力与工作介质压力的关系。此有限元法为各类密封圈接触应力研究提供了 一行之有效的方法,其结果对密封圈密封机理的研究提供了计算依据。 相似文献
6.
在液压缸中,往复动密封圈表面接触应力是决定其密封有效性的关键,但由于在工作过程中对往复密封表面接触状态进行监测的难度很大,因此对其变化规律仍缺乏深入了解。针对这一问题,以液压缸活塞杆Y形密封圈为对象,通过有限元仿真分析密封圈内唇磨损对密封圈表面接触应力的影响,确定密封圈表面接触应力的最佳监测部位;采用光纤光栅传感器(FBG)进行密封槽表面接触应力监测试验,通过铺设于密封槽的FBG传感器采集应力数据,得出密封圈周向和轴向接触应力均随内唇磨损增加呈现先增大后减小的趋势,与仿真结果一致;接触应力对密封磨损程度变化的响应灵敏度会随密封压力的增加而增大。研究结果为液压缸实际运行过程中往复动密封状态的监测提供了依据。 相似文献
7.
水下卡箍连接器金属密封圈的结构对密封性能影响很大。为得到最优的密封圈结构尺寸,通过有限元静力学分析及优化模块,分析金属密封圈所受的接触应力与结构参数之间的关系。结构优化以法兰锥面倾角、密封圈圆弧半径、半宽度、边缘厚度为设计变量,最大接触应力和最小法兰轴向力为目标函数,密封圈最大等效应力为约束变量,建立水下卡箍连接器的多目标优化模型,并使用响应面方法对其进行优化,得到多目标优化下密封圈最佳的尺寸组合。结果表明:在法兰锥面倾角、密封圈圆弧半径、半宽度、边缘厚度4个参数中,法兰锥面倾角对密封圈所需轴向力影响最大,角度越小,密封圈所需要的轴向力越小;优化后的密封圈在同样接触应力时,最大等效应力降低7.7%,法兰轴向力降低37.3%。可见在密封相同压力下,优化后密封圈需要的轴向力更小,因而使用寿命更长。 相似文献
8.
由于加工圆度误差的影响,井下流量控制阀径向金属密封接触应力分布不均匀,从而影响密封性能。利用有限元方法研究具有圆度误差的径向金属密封唇部接触应力分布,并分析圆度误差对径向金属密封接触应力的影响;基于有限元分析结果提出径向金属密封接触应力分布的理论解析式,并进行误差分析。具有圆度误差的径向金属密封唇部接触应力分布的理论解与数值解相符,各参数引起的最大接触应力的平均相对误差约为10%。根据具有圆度误差的径向金属密封副接触应力的分布规律,提出合理的过盈量函数,修正了径向金属密封轴对称结构的悬臂梁模型的接触应力理论关系式,得出了圆度误差下的径向金属密封接触应力分布规律。研究结果为井下流量控制阀径向金属密封的设计提供了理论指导。 相似文献
9.
O形密封圈的有限元力学分析 总被引:32,自引:0,他引:32
采用大型有限元分析程序 MARC/ Mentat32 0对 O形密封圈在“安装”状态和密封流体介质作用下的力学性能进行了分析 ,研究了造成密封圈撕裂损坏及材料松弛的当量 Cauchy应力峰值大小及位置随密封流体介质作用的变化情况 ,以及轴和密封接触面间的接触压力及剪应力分布状态。为重要场合下 O形密封圈的正确选用提供了一种方法。 相似文献
10.
真空环境中O形密封圈泄漏分析 总被引:1,自引:0,他引:1
使用ABAQUS有限元分析软件建立了O形密封圈的二维轴对称模型,重点研究了压缩率与介质压力对O形圈接触应力、接触长度的影响,结果表明:O形密封圈的接触应力大小与接触宽度随着压缩率和介质压力的增大而增大。除此之外,通过应用Roth.A真空泄漏理论分析了压缩率、表面粗糙度、温度对O形密封圈密封性能的影响,结果表明:O形密封圈的泄漏率随着压缩率的增大而减小,随着表面粗糙度和温度的增大而增大,为了保证O形圈的密封性能,应当适当提高压缩率与密封表面的加工精度。 相似文献
11.
12.
研究原油高温热采工具 O 形橡胶密封圈在高温高压下的密封特性。借助于大型有限元分析软件 ANSYS,建立 O 形橡胶密封圈及其边界的二维轴对称有限元模型,研究油压、装配间隙和摩擦因数对密封面最大接触应力、剪切应力和 Von Mises 应力的影响,并采用热应力耦合分析方法,分析温度对 O 形密封圈密封性能的影响。结果表明:摩擦因数对应力影响不大,而油压和装配间隙对应力影响很大,过大的装配间隙会造成 O 形橡胶密封圈最大接触应力下降和最大剪切应力上升,造成密封失效;当温度升高时,密封圈最大剪切应力和接触应力相应减小,而最大 Von Mises 应力明显减小,因此应使 O 形密封圈在适当的温度下工作,以确保密封的可靠性。 相似文献
13.
为解决给水泵油封装置中O形圈因密封失效而引起泄漏的问题,利用有限元法对密封圈的大变形、超弹性进行非线性接触分析。首先建立密封圈与转动环沟槽之间的轴对称模型,分析O形圈在不同压缩率、不同轴向压力下的应力分布规律,进而对油封装置结构改进,最后利用试验台位测试油封的密封性能。结果表明: O形密封圈压缩率越大主接触面峰值应力越大,侧接触面应力基本不变;密封圈轴向压力的增加,接触应力也急剧上升,侧面接触应变较大,但工况内无胶料“挤出”发生;改进后双密封O形圈动环结构密封可靠性、安全性更高,在不同工况下进行密封性能试验,油封装置无泄漏,为油封密封圈选型以及避免给水泵实际运行中出现“滴、漏”现象具有一定的指导意义。 相似文献
14.
15.
16.
利用ANSYS软件对泥水盾构机密封用O形圈进行建模,分析静态接触下接触应力与压缩率、流体压力、摩擦因数、硬度之间的变化规律,并拟合接触应力与压缩率和流体压力之间的函数关系。结果表明:随着硬度、压缩率、流体压力和摩擦因数的增大,主接触应力、Von-Mises应力和剪切应力均增大,其中摩擦因数整体上对O形圈应力影响很小;O形圈硬度越大,应力随压缩率的变化率越大;当O形圈承受较小流体压力时,应选用硬度较小的O形圈,使得Von-Mises应力、剪切应力均较小,O形圈产生裂纹、剪切失效的概率减小;当O形圈承受较大流体压力时,应选用硬度大的O形圈,以保证产生的主接触应力大于流体压力。接触应力与压缩率和流体压力之间满足正比例的关系,通过接触应力与压缩率和流体压力关系的拟合式,可计算得到不同流体压力下O形圈的合适压缩率。 相似文献
17.
固体发动机工况中密封圈大变形接触应力分析 总被引:3,自引:1,他引:3
从固体发动机密封结构特点和密封可靠性出发,对所研究的密封结构进行分解和简化。采用接触罚单元算法,应用ANSYS有限元分析系统软件,建立橡胶密封圈的轴对称超弹性非线性问题的三维有限元分析模型,对固体火箭发动机密封的充分必要条件及在工况中密封界面上的接触压应力分布规律进行研究。在讨论超弹性接触问题的前提下,研究密封结构承受不同燃气内压时对密封接触状态的影响。通过对这些影响规律的分析,找出造成密封失效的可能原因,为固体火箭发动机等重要场合下0形橡胶密封圈的正确选用提供一种方法。 相似文献
18.
采用有限元软件ABAQUS,分析活塞和活塞杆间Y形密封圈密封面上的接触压力和摩擦力。针对Y形密封圈存在的密封面接触压力过大和摩擦力波动较大的问题,在原来的Y形圈唇部增加一个O形密封圈,起静密封和提供弹力支撑的作用。分析结果表明,优化后Y形圈接触压力和摩擦力明显减小,且摩擦力曲线波动更小,既能保证密封效果,又减小了因摩擦过大引起的Y形圈磨损失效,提高了Y形圈的使用寿命。 相似文献
19.
橡胶O形密封圈的非线性有限元分析 总被引:21,自引:5,他引:21
借助于大型非线性有限元分析软件MSC.MARC,建立了橡胶O形圈与沟槽接触的非线性有限元分析模型,分析了橡胶O形圈在安装和使用中的接触变形、接触宽度和密封界面上的接触应力分布规律,从而为进一步可靠设计、优化橡胶O形圈提供了理论依据。 相似文献
20.
针对深海高压环境密封壳体用O形密封圈研究不足问题,对O形密封圈在不同压缩率、不同硬度、高介质压力下接触应力大小及应力分布情况等方面进行了研究。对判断O形密封圈失效的方法进行了归纳,提出了基于失效准则判断O形密封圈在深海中所能承受最大压力的方法,利用非线性有限元分析方法进行了分析及预测。研究结果表明:压缩率及材料硬度对O形密封圈的密封能力有重要影响,介质压力的变化会引起O形密封圈内部应力分布的变化;材料硬度为90HA的丁腈橡胶O形密封圈在压缩率为21%的工况中,可以满足5 000 m水深的密封要求。 相似文献