首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
邢斐斐  季君 《润滑与密封》2014,39(10):108-113
设计某装备中大功率电机用的牛顿型磁性液体与磁性润滑脂组合旋转密封。理论上推导2种磁性液体组合旋转密封时的耐压公式和摩擦功耗公式,表明耐压能力主要与密封级数、磁场强度、磁性液体饱和磁化强度及磁性润滑脂屈服应力有关,磁性润滑脂的黏性损耗与转速的(2n+1)(其中n为磁性润滑脂的流动指数)次方成正比。设计适用于大功率电机密封用的大间隙磁性液体及磁性润滑脂组合旋转密封结构,并在密封实验台上进行磁性液体密封耐压实验及磁性润滑脂旋转密封温度测试实验。验证理论分析的正确性及大功率电机磁性液体与磁性润滑脂组合旋转密封方式的可行性。  相似文献   

2.
由于驱动电机的功率和力矩的限制,一些动密封场合对启动力矩有着明确的要求,相较于传统的密封导致启动力矩较大,磁性液体密封在启动力矩方面有更大的优势。但是在不同的环境中,磁性液体密封的启动力矩波动较大,无法达到某些极端密封场合对耐压和力矩的双重要求,从而限制了磁性液体密封在该类密封场合的应用。以温度为切入点,就磁性液体密封的耐压能力和启动力矩进行理论和实验研究,得到温度与磁性液体密封耐压能力和启动力矩的关系。结果表明:磁性液体密封的间隙越小,耐压能力越大;温度越低,最大耐压值越大,-40℃时最大耐压值为80℃时的5倍;启动力矩随压力的增加而逐渐减小;温度越低,启动力矩越大,-40℃时的启动力矩接近20℃时的5倍,并且在低温磁液用量对密封启动力矩的有明显影响。  相似文献   

3.
针对垃圾焚烧工程急冷系统中高速离心泵密封问题,设计一种五极六靴二十四齿的磁性液体旋转密封装置,该装置适用于焚烧的高温烟气环境条件,使用寿命长。理论上推导考虑温度和离心力因素的磁性液体密封耐压公式,得出密封耐压力为线速度的二次函数,温度的一次函数。用Ansys有限元分析软件计算该密封结构分别在间隙0.4、0.5、0.6和0.7 mm下的磁性液体磁场分布。结果表明:密封耐压能力随着密封间隙的减小而逐渐递增,而由于漏磁的存在,递增的程度并非线性的;磁力线分布表明,在第一、六极靴和二、五极靴处漏磁较大。密封实验中得出最大间隙为0.7 mm时单级密封耐压能力达到51.7 kPa。  相似文献   

4.
大直径轴的径向跳动使得磁性液体密封间隙大幅增加,严重削弱了磁性液体密封耐压性能。针对大直径大间隙轴密封耐压能力减弱问题,设计一种具有夹芯磁路的磁性液体密封结构。采用数值模拟的方法研究夹芯磁路下磁性液体密封结构的磁场特性与密封性能,分析夹芯磁路密封结构中密封间隙磁场分布特征,对磁性液体密封经典结构与该新型结构的理论耐压值进行比较和分析。结果表明:与经典磁性液体密封结构相比,该夹芯磁路新型密封耐压能力平均提高约20%,其中在大间隙下耐压能力提升效果更明显;相比于经典磁性液体密封结构,夹芯密封结构的内永磁体使得通过轴的近表面磁力线数量更多;且夹芯密封结构具有更大的磁通密度差值,因而具有更强的聚磁能力。  相似文献   

5.
为了提高大间隙磁性液体密封的耐压能力,在多级磁源磁性液体密封的基础上提出一种新型的磁性液体与迷宫交替式组合密封结构并设计一种普通的具有二级磁源的磁性液体与迷宫交替式组合密封结构。试验研究0.3 mm到0.7 mm间隙下具有机油基、煤油基和酯基磁性液体的交替式组合密封耐压能力,数值模拟该交替式组合密封中密封间隙内的磁场强度,由磁性液体密封耐压理论计算出该交替式组合密封中磁性液体密封的理论耐压值,对交替式组合密封的试验结果与该交替式组合密封中磁性液体密封的理论耐压值进行比较和分析。结果表明,与多级磁源磁性液体密封相比,该交替式组合密封显示良好的密封能力;当密封间隙大于0.4 mm时,该交替式组合密封的耐压能力随着间隙的增大而减小。  相似文献   

6.
磁性润滑脂密封在运转过程中的温升对其使用寿命影响较大.针对这一问题,设计一种多级磁性润滑脂密封实验装置,通过实验研究密封介质压力、磁性润滑脂注入量、密封间隙及转速对磁性润滑脂密封温升的影响,分析不同转速下密封的功率损耗.结果表明:磁性润滑脂的径向截面形状以及剪切速率是温升的主要影响因素;在保证密封承压能力的前提下,适当减少磁性润滑脂注入量,增大密封间隙,可以减少磁性润滑脂的发热量;磁性润滑脂密封的功率损耗随转速升高而增大,且比理论计算结果大,因此在密封系统设计时应予以充分考虑.  相似文献   

7.
为满足航空、航天、冶金等领域大间隙静密封要求,建立磁性液体静密封试验台,设计出磁性液体静密封试验件。在试验台上对磁性液体静密封进行深入研究,通过试验得出磁性液体静密封耐压、磁性液体注入量与密封间隙、密封温度和磁性液体磁化强度的关系。从理论上,计算试验件密封间隙中磁场分布,推导出磁性液体静密封耐压和温度关系的解析表达式,计算磁性液体静密封在不同间隙,不同饱和磁化强度下的最大耐压能力。理论分析和试验表明,在大间隙下磁性液体静密封能够满足一定耐压要求,具有实用价值。  相似文献   

8.
王军  王乐宏  何帅  王建梅 《润滑与密封》2022,47(11):167-171
卧式柱塞泵曲轴密封的可靠运行是曲轴轴承实现润滑与液压支架稳定供液的重要基础。基于磁性液体密封理论,设计一种单磁源梯度齿宽磁性液体密封结构,采用数值模拟的方法研究磁性液体密封结构的磁场分布特征,并分析不同密封间隙和转速对密封耐压性能的影响。结果表明:与均匀极齿宽度磁性液体密封结构相比,梯度极齿宽度密封结构平均耐压能力约提高11%;梯度齿宽密封结构中,随着极齿与永磁体距离的增大,各极齿耐压能力逐渐增强;随着密封间隙的增大,离心力引起密封失效的极限转速逐渐减小。  相似文献   

9.
针对某型飞机磁性液体密封,利用COMSOL有限元分析软件建立不同结构参数的磁性液体密封模型,计算不同密封间隙、极齿宽度、极齿高度、极齿位置、极齿形状下密封的磁场强度差值,进而判断不同磁性液体密封结构的耐压能力。研究结果表明:密封间隙、极齿宽度对磁性液体密封耐压能力影响较大,极齿高度和极齿位置对磁性液体密封耐压能力影响较小;极齿形状为梯形时密封效果最好。通过比较分析,选择最优磁性液体密封结构参数,为磁性液体密封耐压能力研究提供了理论依据。  相似文献   

10.
磁性液体往复运动密封耐压公式的理论研究   总被引:2,自引:1,他引:1  
为了正确得出和验证磁性液体往复运动密封耐压公式,研究了磁性液体往复运动密封中磁性液体的运动机理,利用有限元法分析了密封件的磁场分布及静止耐压能力。利用磁性液体动力学的Navier-Stokes方程与电磁学中的麦克斯韦方程联立推导了磁性液体往复运动密封的耐压公式。在往复运动密封试验台上验证了转速、行程等参数对密封耐压能力的影响。  相似文献   

11.
高黏度非牛顿磁性流体密封耐压性能分析   总被引:3,自引:1,他引:2  
采用ANSYS分析软件对高黏度非牛顿磁性流体密封的磁场进行有限元数值模拟,通过得出的实际密封简化耐压公式计算该密封的耐压能力.结果表明:高黏度非牛顿磁性流体密封能力好于普通牛顿磁流体密封,且由于高黏度非牛顿磁性流体密封的磁极与转轴间隙可以更大,所以适用于轴径向跳动量大的场合,应用范围更广泛.  相似文献   

12.
为研究不同种类磁性液体及密封工况对密封效果的影响,以Fe3O4为磁性颗粒,以链状氟醚油为基液,制备一系列不同颗粒含量、基液分子量的磁性液体,对磁性颗粒及磁性液体的结构、性能进行表征,在搭建的密封试验台上测试磁性液体种类及运行工况对密封耐压效果的影响。结果表明:制备的磁性颗粒粒径为纳米级,呈近球形形貌,具有较高的饱和磁化强度,磁性液体具有较好的分散稳定性;随颗粒含量增加、基液分子量增大,密封耐压值先增大后减小;在颗粒质量分数为30%、基液分子量为4 600 g/mol时,密封耐压值最高;随主轴转速增大,密封耐压值逐渐减小;随密封时间延长,密封耐压值先减小后趋于稳定。  相似文献   

13.
针对托辊通常采用的迷宫密封和唇形密封存在的不可靠、寿命短等问题,提出基于纳米磁性液体的托辊密封与润滑方案。通过设计托辊内外磁性液体密封件,选用兼顾密封与润滑性能的纳米磁性液体,形成可靠液体密封的同时对轴承进行润滑。利用ANSYS有限元软件分析磁性液体密封结构的磁场强度分布规律,计算密封间隙处磁感应强度和磁性液体密封的耐压能力。仿真结果表明,托辊的磁性液体密封结构设计合理,密封耐压能力满足使用要求。  相似文献   

14.
针对牛顿型磁性流体密封的密封间隙较小、适用温度较低的不足,提出了对磁性流体载液的改进。采用高黏度非牛顿润滑脂作为磁性流体的载液,制备成以Fe3O4为磁性颗粒的磁性润滑脂。在试验台上实际测定了该磁性润滑脂用于密封时在不同工况和不同密封结构下的密封压力、密封处的温度,并对影响密封压力和密封处温度的主要原因进行了分析。结果表明,高黏度非牛顿磁性润滑脂密封比牛顿型磁性流体密封的承压能力更高,温度适用范围更广,密封间隙可以大大提高,并允许旋转轴存在一定量的径向跳动;通过调节内摩擦影响因素,可以降低密封处温度,延长使用寿命。  相似文献   

15.
通过实验和数值模拟两个方面对磁性液体密封耐压的能力进行了比较,指出磁性液体密封在应用中存在的问题,并提出解决的方法。  相似文献   

16.
对于某特定大尺寸主轴重型装备,主轴在高线速度运转中会出现一定的径向摆动,导致密封泄漏问题.传统单一轴向磁性液体密封结构未能满足该设备出现径向摆动时的耐压要求,为了解决这一问题,并考虑到机械设备的主轴密封结构的轴向空间受到一定限制,提出一种新型轴向径向串联磁性液体密封结构.理论研究磁路中轴向和径向磁性液体串联密封结构的耐...  相似文献   

17.
为探索往复密封的新方法,对2D25W-69、2.2~8.8压缩机活塞环进行往复密封研究.分析传统的往复密封方式和磁性液体往复密封的缺陷,提出组合往复密封结构的观点.针对2D25W-69、2.2~8.8压缩机活塞环工况条件,设计出三种磁性液体组合密封结构:三斜口填料-磁性液体组合密封结构,C形滑环-磁性液体组合密封结构和改进后的C形滑环-磁性液体组合密封结构.从理论上分析上述三种磁性液体组合密封结构的磁场分布和密封耐压能力.在试验方面,设计、安装了磁性液体往复密封试验台;在设计的往复密封试验台上,测试三种组合密封结构的密封性能.试验结果表明:改进后的C形滑环-磁性液体密封结构具有一定的实际价值.  相似文献   

18.
磁性液体(磁流体/磁流变液)作为一种新型磁控智能材料,兼顾液体的流动性及固体磁性材料的磁响应特性,在外磁场作用下可实现二者间的可逆性转换。磁性液体润滑密封因其零泄漏、自修复等优良特性受到广泛关注,特别是近年来在航天装备中的应用研究。为探讨磁性液体在航天装备中的应用,从恶劣的宇宙环境出发,分析地外空间装备研发所面临的严峻环境挑战,对高真空、高辐射、高低温热循环三大主要问题进行针对性分析,探讨磁性液体用于航天装备润滑/密封的可行性,总结相关磁性液体极端工况润滑/密封技术的进展和局限性,并提出未来研究中亟待解决的重要科学问题。  相似文献   

19.
杨永华 《机械制造》1990,28(8):44-44
磁液密封装置工作介质采用磁性液体,它是铁磁性颗粒的胶体溶液,具有很高的磁性。如图1所示,旋转体1装在内有环形磁铁3的环形极靴2内,在轴和极靴之间的间隙内安放磁性液体4。它具有良好的流动性,可以充填间隙;并保持环形磁铁磁场,以达到可靠的密封。磁液密封装置与通常密封装置相比有很多优点。它有较高的密封性和可靠性,对密封表面加工光洁度要求较低。相反,在一定范围内较大的表面粗糙度还  相似文献   

20.
文中通过对磁性液体密封耐压传递过程的理论分析,提出了三种观点,并在实验的基础上对此三种观点进行了论证,总结了磁性液体密封的耐压传递过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号