首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
U形密封环是液体火箭发动机常用的一种密封结构,其密封性能是决定发动机可靠性的关键因素。为研究U形环的密封机制,改善其整体结构的密封性能,构建U形环密封结构的有限元分析模型,分析常温预紧工况和低温工作工况下密封环的密封性能。结果表明:相对于常温(20 ℃)预紧工况,低温(-183 ℃)工作工况下U形环密封面的有效接触宽度和接触应力更大,但仍存在密封面接触不充分的问题。采用密封界面形貌的优化设计方法对U形环密封界面进行优化设计,优化后U形环密封面从平坦形貌变为非平坦的非线性形貌,低温工作工况下U形环密封面的有效接触宽度增加了138%,接触应力分布均匀程度提升了99%,密封面的有效接触宽度大幅增加,接触应力分布的均匀性大幅改善,整体结构的密封性能显著提升。  相似文献   

2.
真空环境中O形密封圈泄漏分析   总被引:1,自引:0,他引:1  
使用ABAQUS有限元分析软件建立了O形密封圈的二维轴对称模型,重点研究了压缩率与介质压力对O形圈接触应力、接触长度的影响,结果表明:O形密封圈的接触应力大小与接触宽度随着压缩率和介质压力的增大而增大。除此之外,通过应用Roth.A真空泄漏理论分析了压缩率、表面粗糙度、温度对O形密封圈密封性能的影响,结果表明:O形密封圈的泄漏率随着压缩率的增大而减小,随着表面粗糙度和温度的增大而增大,为了保证O形圈的密封性能,应当适当提高压缩率与密封表面的加工精度。  相似文献   

3.
周到  张秀平  贾磊  钟瑜 《机械》2008,35(11)
为研究电机耐久性试验装王密封结构的密封性能,采用橡胶材料的Mooney-Rivlin本构关系和非线性有限元法,建立电机耐久性试验装置密封结构的二维轴对称模型.在压缩率一定的前提下,研究了O形图承受不同内压时对密封接触状态的影响,碍出了橡胶O形图在安装和使用中的米塞斯应力、剪切应力、接触宽度和密封界面上的接触应力分布规律.结果表明:压缩率一定时,在不同油压作用下,试验装置密封结构能够满足密封要求,但密封裕度将随油压的增加而减小.文中的方法和结果对相关密封结构的设计具有一定的指导意义.  相似文献   

4.
当密封结构存有尺寸偏差时,O形圈的压缩率会随之变化,公称尺寸对应压缩率下的接触压力分布已无法作为衡量此刻密封结构密封性能优劣的参考指标。为研究结构尺寸偏差对密封性能产生的影响,在构建力学仿真模型的基础上,采用控制变量法重点分析O形圈接触压力分布随密封结构尺寸偏差变化的规律;以最大接触压力为控制参量,通过不同尺寸组合的力学仿真分析,获取使最大接触压力呈现出最小状况的最劣尺寸组合;根据不同距离下挡板与沟槽的配合,以泄漏率为评判指标,通过不同配合间隙下O形圈密封性能的对比以分析运行过程中振动对挡板与沟槽配合的影响,从而为O形圈装配组合方式的选择和密封面接触情况的研究奠定了基础。  相似文献   

5.
金属O形环的力学性能对于密封系统的强度设计、密封性、可靠性等有着直接影响。为研究金属O形环的力学性能,以核反应堆压力容器用金属O形环为研究对象,考虑密封环的复合结构、材料弹塑性特征和工况条件,采用有限元方法建立O形环力学性能仿真模型,分析密封环的压缩回弹特性、应力应变特征、接触特性以及银层的作用,并进行相关试验验证。结果表明:该有限元模型计算结果与试验结果具有良好的一致性;压缩率过大或过小都将导致其密封性能下降;整个压缩回弹过程可分为弹性变形、塑性变形、法兰接触及回弹4个阶段,O形环的回弹补偿性能由其压缩率决定;镀银层对于O形环接触压力分布起到了均化作用,而对总体的压缩回弹特性影响不大。  相似文献   

6.
矩形橡胶密封圈的有限元分析   总被引:8,自引:2,他引:6  
利用ANSYS建立了矩形橡胶密封圈的有限元模型,分析了初始压缩率和液体压力对矩形圈变形和密封面处接触压力的影响,并与O形圈进行了对比。结果表明,矩形圈密封面处的接触压力随初始压缩率和液体压力的增加而增大;矩形圈较O形圈的接触压力均匀、密封面大、密封效果好且初始压缩率小、老化速度慢、尺寸稳定性好,但矩形密封圈的接触面积大,散热效果差,只能用于静密封。  相似文献   

7.
特殊螺纹金属对金属密封的可靠性不仅与主密封面的结构和油套管材料性能有关,而且与螺纹接头密封面表面粗糙度、泄漏介质特性等因素有关,其密封性能的研究是一项复杂而又难以解决的问题。在微观尺度下,分析特殊螺纹金属对金属气密封泄漏机制,并建立微观尺度下气体通过金属密封间隙泄漏速率的理论模型;在考虑密封表面粗糙度的情况下,建立特殊螺纹气体泄漏率的数学模型。以锥面对锥面密封为例,研究密封表面接触应力、表面粗糙度和密封面接触长度对特殊螺纹气体密封性能的影响。计算结果表明:随密封面接触应力的增大和密封面有效接触长度的增加,气体泄漏率均呈幂率指数规律降低;随密封面粗糙度的增加,气体泄漏率随之增大。  相似文献   

8.
O形密封圈密封性能非线性有限元数值模拟   总被引:6,自引:1,他引:5  
利用ABAQUS软件建立海底采油设备用O形密封圈轴对称模型,对其在不同压缩率、不同油压时的Von Mi-ses应力及密封面接触压力分布规律进行探讨,确定O形密封圈材料易失效位置;分析压缩率和油压对O形密封圈最大Von Mises应力、最大接触压力及最大接触压与油压压差的影响。结果表明:O形密封圈最大Von Mises应力、密封面最大接触压力随压缩率和油压的增加而增加,且O形密封圈在中低高压下的密封能力高于超高下的密封能力,为海底采油设备用O形密封圈的结构设计及选型提供相关参考。  相似文献   

9.
为解决给水泵油封装置中O形圈因密封失效而引起泄漏的问题,利用有限元法对密封圈的大变形、超弹性进行非线性接触分析。首先建立密封圈与转动环沟槽之间的轴对称模型,分析O形圈在不同压缩率、不同轴向压力下的应力分布规律,进而对油封装置结构改进,最后利用试验台位测试油封的密封性能。结果表明: O形密封圈压缩率越大主接触面峰值应力越大,侧接触面应力基本不变;密封圈轴向压力的增加,接触应力也急剧上升,侧面接触应变较大,但工况内无胶料“挤出”发生;改进后双密封O形圈动环结构密封可靠性、安全性更高,在不同工况下进行密封性能试验,油封装置无泄漏,为油封密封圈选型以及避免给水泵实际运行中出现“滴、漏”现象具有一定的指导意义。  相似文献   

10.
金属-橡胶接触广泛存在于密封结构中,密封接触表面上微凸体间的相互作用会直接影响整个密封界面的接触特性,进而影响其密封性能。基于粗糙密封界面的单个微凸体,考虑橡胶的蠕变特性,采用理论分析和仿真研究相结合的方式研究橡胶微凸体与金属表面的接触特性。通过橡胶蠕变特性的实验结果,构建橡胶蠕变计算模型;构建半球微凸体与金属平板间的有限元模型,进行考虑蠕变特性的仿真,分析其接触特性,并与Hertz接触理论的计算值进行对比。结果表明:在蠕变阶段,接触半径、法向变形量和最大等效蠕变应变均随蠕变时间的增加而增大,最大接触压力随蠕变时间增大而减小,这均可能导致密封性能的下降;随压力载荷的增大,接触半径、法向变形量、最大接触压力和最大等效蠕变应变均增大,但增大的趋势逐渐减小;橡胶微凸体与金属表面间的等效模量随蠕变时间的增加而减小,随压力载荷增大而增大。  相似文献   

11.
金属橡胶密封件(MRS)作为一种新型轻质弹性金属结构,可以替代传统聚合物材料密封件在极端环境中使用。但由于MRS结构的复杂与制备工艺的繁琐,MRS结构特性与力学性能无法精确设计而影响了工程应用。针对这一不足,基于计算机仿真技术,对大环径比O形MRS的制备工艺流程进行数值模拟,采用虚拟制备构建可以真实反映MRS宏观力学性能及微观复杂结构的模型,并依据实际工况对MRS不同压缩工况下的模型进行静力学仿真分析,分析压缩率对于密封系统摩擦界面的接触特性及其结构响应的影响,结果表明其接触特性受到压缩工况及包覆层塑性失效的共同作用。以静力学仿真输出的细观接触应力为参量,结合间隙流动模型,对密封件泄漏率进行仿真和计算,分析其泄漏率的影响因素,结果表明在密封件不发生塑性失效的前提下,较大的压缩率可以减少泄漏。研究结果对新型宽温域密封件的参数设计、性能研究与推广应用有一定的指导意义。  相似文献   

12.
非API套管接头主要通过金属对金属的径向过盈主密封结构,保证气井开采时的井筒内气密性。依据7 in.套管接头尺寸选用锥面对锥面径向主密封结构型式加工试件,通过密封面过盈配合尺寸控制密封预紧力,测试不同密封预紧力下的气体泄漏率;分别采用车削、磨削和研磨工艺加工接触面,对比分析不同表面粗糙度对气密性能影响程度;取径向密封接触宽度范围2.5~25 mm,测试相同密封预紧力和气体压力下,不同接触宽度对应的气体泄漏率。试验测试结果表明,较高的初始接触压力是形成金属对金属密封的必要条件,当接触压力接近2倍材料屈服强度后,随气体压力升高泄漏率曲线近似保持水平,径向金属密封产生稳定气密性能;密封面的表面粗糙度不同,其进入稳定密封状态的快慢程度不同,表面光洁度越高、进入速度越快气密性能越好;径向接触宽度在2.5~10 mm范围内,气体泄漏率随接触宽度增加而显著降低,10 mm以后接触宽度对气密性能影响不大。  相似文献   

13.
为研究临近空间载人舱舱门密封特性,对临近空间载人舱舱门P形橡胶密封圈进行有限元压缩行为仿真分析,分析P形橡胶密封圈主副密封面密封接触宽度和接触应力随舱门间隙与舱门行程变化的规律,并根据该规律给出舱门压缩行程和舱门密封间隙的设计推荐值。基于ROTH泄漏模型推导出P形橡胶密封圈的总漏率模型,并计算该泄漏模型的稳态漏率值。通过舱门密封试验,对P形橡胶密封圈的总漏率进行验证。P形橡胶密封圈总漏率计算值与试验结果基本吻合,验证了P形橡胶密封圈总漏率模型的有效性。  相似文献   

14.
黄发  马健  吴正洪 《润滑与密封》2020,45(7):128-135
针对某型发动机高压转子连接结构的密封问题,设计一种U形金属密封环,分析研究密封环的密封和强度性能,探究结构参数(包括根部倒圆、壁厚、环高、接触面曲率半径、密封环接触面角度、密封环配合件角度)对密封环最大等效应力、最大接触应力的影响,基于ANSYS Workbench优化设计模块,采用代理模型结合遗传算法的优化技术对密封环结构进行优化。结果表明:安装压缩率范围为3.56%~6.33%时,可保证安装和工作2种工况下密封和强度的要求;最大等效应力与壁厚成正比关系,而与根部倒圆和环高成反比关系;接触面曲率半径对最大等效应力影响较小,但最大接触应力随着接触面曲率半径的增加而增加;选择合适的角度范围时,密封环接触面角度和密封环配合件角度对最大等效应力、最大接触应力影响均较小。密封环结构优化后,最大等效应力在安装和工作2种工况下分别减小了34.3%和30.4%,同时密封环质量减少了6.1%。对设计的U形金属密封环随整机进行了试验,结果表明U形金属密封环密封性能良好,验证了设计的合理性。  相似文献   

15.
李斌  蒋小丽 《润滑与密封》2014,39(6):112-115
采用有限元软件ABAQUS,分析活塞和活塞杆间Y形密封圈密封面上的接触压力和摩擦力。针对Y形密封圈存在的密封面接触压力过大和摩擦力波动较大的问题,在原来的Y形圈唇部增加一个O形密封圈,起静密封和提供弹力支撑的作用。分析结果表明,优化后Y形圈接触压力和摩擦力明显减小,且摩擦力曲线波动更小,既能保证密封效果,又减小了因摩擦过大引起的Y形圈磨损失效,提高了Y形圈的使用寿命。  相似文献   

16.
为了研究O形圈的应力松弛规律及其在应力松弛条件下的密封性能,通过O形圈应力松弛试验,得到其轴向载荷衰减规律,将这些载荷值导入ANSYS中计算出O形圈的接触压力,并利用逾渗理论计算出O形圈密封面的泄漏率。研究结果表明:应力松弛条件下,O形圈上的轴向载荷随时间缓慢下降,初始压力越大轴向载荷衰减得越快,总体来看O形圈上的轴向载荷随时间遵循F_z=Aexp(-t/B)+C的衰减规律;施加的载荷越大O形圈与其接触面各点的接触压力越大,且不同载荷下O形圈与其接触面各点的接触压力均大于介质压力;应力松弛条件下O形圈密封面的泄漏率极小。试验、仿真计算及理论分析均表明,O形圈在应力松弛条件下具有良好的密封性能,证明了O形圈作为静密封的可靠性。  相似文献   

17.
提出一种基于流固耦合的橡胶O形圈静密封泄漏计算方法。对平行平板泄漏模型进行改进,使其适用于通道截面高度可变的泄漏率、介质压力计算;采用有限元仿真方法进行固体力学分析,求解宏观接触压力;采用Greenwood-Willamson模型进行接触力学分析,求解泄漏通道平均高度。基于数值方法研究介质压力、环境温度、表面形貌参数对橡胶O形圈密封性能的影响规律。结果表明,随着介质压力、环境温度、表面高度分布标准差的增大,体积泄漏率逐渐增大。上述数值方法以泄漏率作为表征密封性能的参数,能综合考虑橡胶材料、介质、工况等多种因素对O形圈密封性能的影响,对橡胶O形圈的寿命预测和失效分析更具指导意义。  相似文献   

18.
针对高温高压下悬挂器橡胶密封件的失效问题,采用316L软金属,设计线型、正弦、椭圆、抛物线4种不同的密封结构,采用ANSYS软件分析套管悬重及不同顶丝压力下的接触压力和接触宽度的变化规律。结果表明:随顶丝压力的增加,线型密封各接触面处的平均接触压力增幅较小,正弦和抛物线型密封各接触面处的平均接触压力起伏式增加,椭圆密封各接触面处的平均接触压力平稳增加,表明采用椭圆型接触面有利于密封的稳定。实验结果表明,该全金属多级等锥椭圆曲面密封结构可靠,能满足油田井口装置140 MPa极限工况的密封要求。  相似文献   

19.
液压作动器内部密封件的蓄能性能是衡量其可靠性的关键,而U形弹簧作为蓄能密封圈的弹性元件,其压缩刚度和弹性压缩极限是决定其蓄能性能的主要因素。建立基于材料参数的U形弹簧弹塑性有限元模型,计算U形弹簧的压缩刚度、弹性压缩极限和线性压缩临界值,分析典型结构参数对蓄能特性的影响;基于响应面法构建多因素数学模型,比较各结构参数对弹簧压缩刚度和弹性压缩极限的影响程度;通过多次弹簧压缩试验验证了计算模型的准确性。结果表明:弹簧厚度、截面总长、开槽宽度、周期宽度和根部圆弧半径为压缩刚度的主要影响因素,其影响依次减小;弹簧厚度、截面总长和根部弧半径为弹性压缩极限的主要影响因素,其影响依次减小。重复压缩试验证明,弹簧屈服产生的塑性变形会随着压缩次数累加,导致弹簧开口宽度减小,导致密封圈动态密封性能降低;当蓄能密封圈用于动密封时其压缩量不宜超过弹性压缩极限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号