首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fracture toughness tests were performed in the transition region for ASTM A508 Class 3 steel using about 160 specimens. The KJ-values which are converted from Jc of the smaller specimens indicated a wide scatter ranging from below the KIc-value to much higher toughness. The fast brittle fracture behavior in the transition regime can be divided into two regions: (1) the region where fracture occurs on a blunting line (Region I) and (2) the region where fracture occurs on an R-curve (Region II). The scatter of the KJ-values in each region is caused by the amount of crack extension contained in the specimens. The methods to obtain the fracture toughness equivalent to the KIc from the KJ values were also presented.In the upper shelf region, the ductile fracture behavior of A508 Class 3 base metal and weldments was investigated. The 25% side grooved specimen was recommended for measuring the resistance against ductile crack growth. The weld heat affected zone (HAZ) has comparatively higher tearing modulus, whereas the weld metal shows the lowest one.  相似文献   

2.
A data base of JR curve trends is being established for irradiated, light-water reactor pressure vessel steels of low upper shelf toughness. R-curve trends have been developed for several welds made with Linde 80 flux and containing a high copper impurity which enhances the sensitivity to irradiation embrittlement. Tests were conducted using compact toughness specimens of 12.5 mm to 100 mm thickness. These data provide the materials properties necessary for a tearing instability analysis of postulated accident conditions in certain commercial power reactors. Irradiation decreased the level of the R curve significantly in most cases. Furthermore, the average value of tearing modulus (Tavg) was a more discriminating indicator of toughness degradation than the crack initiation toughness (JIc). Temperature-dependent correlations between the R-curve parameters (JIc, Tavg) and Charpy-V (Cv) upper shelf energy have been suggested here and in other programs. This finding could enhance the significance of Cv reactor surveillance data with respect to structural integrity. However, JIc and Tavg have demonstrated an inverse relationship with temperature which is not reflected in Cv upper shelf energy and this must be taken into account in the development of correlations.  相似文献   

3.
The leak before break analysis of SS 316L(N) components of the prototype fast breeder reactor requires the elastic plastic fracture toughness parameter J for 0.2 mm crack extension, J0.2, especially for the welds, at the operating temperatures. The J-R curves for the welds produced using the consumable developed by Indira Gandhi Centre for Atomic Research, were determined in the as-welded condition as well as after thermal ageing (923 K/4200 h) conditions at 298 K and 643 K, using unloading compliance method for 298 K and normalization method for 643 K. The aged material exhibited pop-in crack extensions of magnitudes that, according to ASTM E1820 standard, could be ignored for multi-specimen data analysis for determining J0.2. Therefore, for this condition, Jnom-Δa curves were established using the multiple specimen method and also single specimen normalization method; for the latter, a modification earlier developed by the authors for accounting for small pop-in crack extensions was used. The value of J0.2 from both methods showed excellent reproducibility. Ageing is seen to reduce the toughness of this material considerably at both the testing temperatures.  相似文献   

4.
As a necessary step in the chain of transferability from small specimens to actual structures the numerical evaluations of two crack-growth resistance experiments on the basis of the J-integral and utilising sidegrooved compact specimens of different sizes, tested at room temperature and at 285°C are discussed. The necessary experimental and numerical techniques are presented:
• -The partial unloading technique as applied in the IWM is applicable with high accuracy and reproducability in the relevant temperature range up to operating temperature.
• -The J-evaluation combined with a node shifting and releasing technique as implemented in the IWM-version of ADINA proved to be a powerful and economic tool even for parameter studies.
The results of the experiments and of the numerical evaluations are presented as force-displacement diagrams and as J-integral vs. crack extension curves. The good qualitative and quantitative agreement supports the experimental evaluation of J from the force-displacement diagram and validitates the numerical procedures to be applied and extended to real structues.

References

[1]ASTM E 399-81 Standard test method for plane-strain fracture toughness of metallic materials, Annual Book of ASTM Standards (1981) Part 10, Philadelphia.[2]ASTM E 813-81 Standard test for JIC, a measure of fracture toughness, Annual Book of ASTM Standards (1981) Part 10, Philadelphia.[3]P. Albrecht, W.R. Andrews, J.P. Gudas, J.A. Joyce, F.J. Loss, D.E. McCabe, D.W. Schmidt and W.A. VanDerSluys, Tentative test procedure for determining the plane strain JI-R-curve, Journal of Testing and Evaluation, JTEVA 10 (6) (1982), pp. 245–251. View Record in Scopus | Cited By in Scopus (5)[4]K.J. Bathe, ADINA, a finite element program for automatic dynamic incremental nonlinear analysis, Report 82 448-1 (2nd Ed.), Massachusetts Institute of Technology, Cambridge, Mass., USA (1980).[5]J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35 (1968).[6]D.M. Parks, The virtual crack extension method for nonlinear material behavior, Comp. Methods Appl. Mech. Engrg. 12 (1977).[7]H.G. deLorenzi, J-integral and crack growth calculations with the finite element program ADINA, Methodology for plastic fracture, EPRI Report SRD-78-124 (1978).[8]H.G. deLorenzi and C.F. Shih, Fracture parameters in side-grooved specimens, General Electric U.S. Report No. 80 CRD 211 (1980).[9]F.J. Loss, B.H. Menke, R.A. Gray Jr. and J.R. Hawthorne, J-R-curve characterization of irradiated nuclear pressure vessel steels, Proceedings of US. NRC, CSNI Specialist's Meeting on Plastic Tearing Instability St. Louis, Missouri, USA (1979).  相似文献   

5.
In this work, influence of hydrogen and temperature on the fracture toughness parameters of unirradiated, cold worked and stress relieved (CWSR) Zr–2.5Nb pressure tube alloys used in Indian Pressurized Heavy Water Reactor is reported. The fracture toughness tests were carried out using 17 mm width curved compact tension specimens machined from gaseously hydrogen charged tube-sections. Metallography of the samples revealed that hydrides were predominantly oriented along axial–circumferential plane of the tube. Fracture toughness tests were carried out in the temperature range of 30–300 °C as per ASTM standard E-1820-06, with the crack length measured using direct current potential drop (DCPD) technique. The fracture toughness parameters (JQ, JMax and dJ/da), were determined. The critical crack length (CCL) for catastrophic failure was determined using a numerical method. It was observed that for a given test temperature, the fracture toughness parameters representing crack initiation (JQ) and crack propagation (JMax, and dJ/da) is practically unaffected by hydrogen content. Also, for given hydrogen content, all the aforementioned fracture toughness parameters increased with temperature to a saturation value.  相似文献   

6.
Fracture resistance (J–R) curves, which are used for elastic–plastic fracture mechanics analyses, are known to be dependent on the cyclic loading history. The objective of this paper is to investigate the effect of reverse cyclic loading on the J–R curves in C(T) specimens. The effect of two parameters was observed on the J–R curves during the reverse cyclic loading. One was the minimum-to-maximum load ratio (R) and the other was the incremental plastic displacement (δcyclei), which is related to the amount of crack growth that occurs in a cycle. Fracture resistance tests on C(T) specimens with varying the load ratio and the incremental plastic displacement were performed, and the test results showed that the J–R curves were decreased with decreasing the load ratio and decreasing the incremental plastic displacement. Direct current potential drop (DCPD) method was used for the detection of crack initiation and crack growth in typical laboratory J–R tests. The values of crack initiation J-integral (JI) and crack initiation displacement (δi) were also obtained by using the DCPD method.  相似文献   

7.
The J-integral method cannot be applied to the elastic plastic dynamic crack propagation, because unloading and inertia force may take place. From this point of view dynamic elastic plastic scheme using J-integral is developed.Using this dynamic finite element program an MRL type specimen is analyzed. As the result, the property of path-independence of the J-integral under the existence of inertia force and unloading is confirmed. Dynamic effects are considerably small in the MRL type specimen. Also the influence of plastic zone on the crack arrest toughness is shown.Finally the present result is compared with the request of ASTM 2nd round robin test program for crack arrest toughness.  相似文献   

8.
J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. This weldment was machined into 1T and 2T compact specimens for single specimen unloading compliance J-integral tests. The specimens were cut to measure the fracure toughness of the base metal, weld metal and the heat affected zone (HAZ). The tests were performed at 550°F, 300°F and room temperature. The results of the J-integral tests indicate that the JIc of the base plate ranged from 4400 to 6100 in lbs/in2 at 550°F. The JIc values for the tests performed at 300°F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that JIc was greater than 8000 in lb/in2. The J-integral tests performed on the weld metal specimens indicate that the JIc values ranged from 930 to 2150 in lbs/in2 at 550°F. The JIc values of the weld metal specimens tested at 300°F and room temperature were 2300 and 3000 in lbs/in2 respectively. One HAZ specimen was tested at 550°F and found to have a JIc value of 2980 in lbs/in2 which indicates that the HAZ is an average of the base metal and weld metal thoughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding.The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550°F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these test indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack.  相似文献   

9.
Dynamic loading to ferromagnetic materials and large scaled yielding result in peak or valley and non-linear curve, respectively, on the Direct Current Potential Drop (DCPD) versus Crack Opening Displacement (COD) plots, which make it difficult to determine the crack initiation point. In this work high intensity of current up to 100 A was applied to the specimens of SA106Gr.C ferritic steel and the crack growth behavior was directly monitored by a high speed camera to obtain the crack initiation point. The effects of loading rate up to 1200 mm min−1 upon the fracture resistance were explored. As the results, it has been shown that, although no substantial difference was seen in the load–COD plots, the crack initiation and then Ji and JR curve were quite sensitive to the loading rate. That is, under the loading rate of 300 mm min−1 the material showed the worst fracture resistance than under static loading and even under the higher loading rates of 600 and 1200 mm min−1. Also applying the high speed camera and high current source have been proved to be an effective way to find out the accurate crack initiation point and to compensate the pulse of DCPD due to the ferromagnetic effect.  相似文献   

10.
The objective of this investigation was to evaluate the use of small specimen JR curves in assessing the fracture resistance behavior of reactor vessels containing low upper shelf (LUS) toughness weldments. As required by the U.S. Code of Federal Regulations (10 CFR, Part 50), reactor vessel beltline materials must maintain an upper shelf Charpy V-Notch (CVN) energy of at least 50 ft-lbs (68 J) throughout vessel life. If CVN values from surveillance specimens fall below this value, the utility must demonstrate to the U.S. Nuclear Regulatory Commission (NRC) that the lower values will provide “margins of safety against fracture equivalent to those required by Appendix G of the ASME Boiler and Pressure Vessel Code”. This paper will present recommendations regarding the material fracture resistance aspects of this problem and outline an analysis procedure for demonstrating adequate fracture safety based on CVN values.It is recommended that the deformation formulation of the J-integral be used in the analysis described above. For cases where J-integral fracture toughness testing will be required, the ASTM E1152-87 procedure should be followed, however, data should be taken to 50% to 60% of the specimen remaining ligament. Extension of the crack growth validity limits for JR curve testing, as described in E1152-87, can be justified on the basis of a “J-controlled crack growth zone” analysis which shows an engineering basis for J-control to 25% to 40% of the specimen remaining ligament. If J-R curve extrapolations are required for the analysis, a simple power law fit to data in the extended validity region should be used. The example analysis performed for low upper shelf weld material, showed required CVN values for a reactor vessel with a 7.8 inch (198 mm) thick wall ranging from 32 ft-lbs (43 J) to 48 ft-lbs (65 J), depending on the magnitude of the thermal stress component.  相似文献   

11.
Ontario Hydro has developed a leak-before-break (LBB) methodology for application to large diameter piping (21, 22 and 24 inch) Schedule 100 SA106B heat transport (HT) piping as a design alternative to pipe whip restraints and in recognition of the questionable benefits of providing such devices. Ontario Hydro's LBB approach uses elastic-plastic fracture mechanics (EPFM).In order to assess the stability of HT piping in the presence of hypothetical flaws, the value of the material J-integral associated with crack extension (JR curve) must be known. In a material test program J-resistance curves were determined from various pipe heats and four different welding procedures that were developed by Ontario Hydro for nuclear Class 1 piping. The test program was designed to investigate and quantify the effect of various factors such as test temperature, crack plane orientation and welding effects which have an influence on fracture properties. An acceptable lower bound J-resistance curve for the piping steels and welds were obtained by machining maximum thickness specimens from the pipes and weldments and by testing side-grooved compact tension specimens. This paper addresses the effect of test temperature and post-weld heat treatment on the J-resistance curves from the welds.The fracture toughness of all the welds at 250°C was lower than that at 20°C. Welds that were post-weld heat treated showed high crack initiation toughness, Jlc, rising J-resistance curves and stable and ductible crack extension. Non post-weld heat treated welds, while remaining tough and ductile, showed comparatively lower JIc, and J-resistance curves at 250°C. This drop in toughness is possibly due to a dynamic strain aging mechanism evidenced by serrated load-displacement curves. The fracture toughness of non post-weld heat treated welds increased significantly after a comparable post-weld heat treatment.The test procedure was validated by comparing three test results against independent tests conducted by Materials Engineering Associates (MEA) of Lanham, Maryland. The JIc and J-resistance curves obtained by Ontario Hydro and MEA were comparable.  相似文献   

12.
The crack initiation and propagation characteristics of two medium grained polygranular graphites, nuclear block graphite (NBG10) and Gilsocarbon (GCMB grade) graphite, have been studied using the Double Torsion (DT) technique. The DT technique allows stable crack propagation and easy crack tip observation of such brittle materials. The linear elastic fracture mechanics (LEFM) methodology of the DT technique was adapted for elastic-plastic fracture mechanics (EPFM) in conjunction with a methodology for directly calculating the J-integral from in-plane displacement fields (JMAN) to account for the non-linearity of graphite deformation. The full field surface displacement measurement techniques of electronic speckle pattern interferometry (ESPI) and digital image correlation (DIC) were used to observe and measure crack initiation and propagation.Significant micro-cracking in the fracture process zone (FPZ) was observed as well as crack bridging in the wake of the crack tip. The R-curve behaviour was measured to determine the critical J-integral for crack propagation in both materials. Micro-cracks tended to nucleate at pores, causing deflection of the crack path. Rising R-curve behaviour was observed, which is attributed to the formation of the FPZ, while crack bridging and distributed micro-cracks are responsible for the increase in fracture resistance. Each contributes around 50% of the irreversible energy dissipation in both graphites.  相似文献   

13.
The leak-before-break (LBB) design of the piping system for nuclear power plants has been based on the premise that the leakage due to the through-wall crack can be detected by using leak detection systems before a catastrophic break. The piping materials are required to have excellent JR fracture characteristics. However, where ferritic steels for reactor coolant piping systems operate at the temperatures where dynamic strain aging (DSA) could occur, the fracture resistance could be reduced with the influence of DSA under dynamic loading. Therefore, in order to apply the LBB design concept to the piping system under seismic loading, both static and dynamic JR characteristics must be evaluated.Materials used in this study are SA516 Gr.70 for the elbow pipe and SA508 Cl.1a for the main pipe and their welding joints. The crack extension during the dynamic and the static JR tests was measured by the direct current potential drop (DCPD) and the compliance method, respectively. This paper describes the influences of the dynamic strain aging on the JR fracture characteristics with the loading rate of the pipe materials and their welding joints.  相似文献   

14.
The report summarizes some of the methods which are currently used for assessing the fracture toughness of materials under elastic and elastic-plastic conditions. The main parameters which are considered are (1) plane strain fracture toughness (KIc), (2) equivalent energy (KIcd), (3) contour integral (J) and (4) crack opening displacement (COD). Gross strain crack tolerance and stress concentration methods are also discussed.It is concluded that of these parameters, the contour integral and the crack opening displacement have most potential for future development. These two parameters are shown to be equivalent, however, at the present stage of development the COD concept has several advantages over the J concept. Firstly, the COD concept is able to take into account, secondary stresses, such as welding residual stresses. Because these stresses are in equilibrium, they do not appear in energy measurements to evaluate J. Secondly, the COD value is a physical measure of the crack tip conditions which includes the effect of stress state and thickness. It is, therefore, possible to measure and calculate COD levels for cracks in real structures. It is not possible to evaluate J for real structures since J methods are appropriate only to in-plane problems. This also means that partial wall (thumbnail) flaws are better characterized by the COD concept.The COD concept has been developed to a stage where it is possible to estimate the significance of flaws in welded structures provided the toughness of the material and the acting stresses or strains are known. This development is described and the method used to analyze tests on model pressure vessels with 6″ thick walls. A comparison is made with other methods, and it is concluded that although the COD analysis gives conservative estimates of the flaw size to cause failure, further work is necessary to be able to predict vessel burst conditions when failure is preceded by extensive plasticity and stable ductile tearing. A simple nomogram to determine COD levels to ensure leak before break conditions is also developed.  相似文献   

15.
Elastic-plastic crack tip fields can be characterised by two parameters, J and T/Q which describes crack tip constraint. This forms the foundation of a constraint based fracture mechanics in which toughness is expressed as a function of constraint in the form of a J–(T/Q) locus. The enhanced toughness associated with shallow cracks and defects can be used in a systematic manner by constraint matching, and implemented through a simple modification to a failure assessment diagram. This methodology enables the conservatism associated with the use of deeply cracked fracture toughness measurements to be relaxed. In this work these methods have been applied to a tubular welded joint.  相似文献   

16.
Two quantitative relations for the calculation of the fracture toughness of ductile materials available in the literature in mathematically closed form — the relation of Stroppe relating the critical value Jc of the J-integral to microstructural data as well as data of tensile tests and the relation of Hahn and Rosenfield relating fracture toughness and data of tensile tests — are applied to three conditions of different toughness of the 12% Cr-steel X 20 CrMoV 12 1.The microstructural parameters necessary for the calculation of the J-integral at crack initiation such as type, size, density and arrangement of nonmetallic inclusions as well as precipitates were determined for the three material conditions, X 20 CrMoV 12 1 optimized (low sulphur content), X 20 CrMoV 12 1 conventional (higher sulphur content) and the aged similar weld metal. The tensile tests and J—R-tests were performed at 150°C, where the energy absorbed corresponds to the upper shelf.Comparing the Ji-values calculated according to the equation of Stroppe with the Ji-values experimentally determined it is shown that the calculated values fall into the scatterband of the experimentally determined ones, showing a good agreement of calculated with the measured values for the three material conditions. In the case of the optimized X 20 CrMoV 12 1 the value of Ji, calculated according to the relation of Hahn and Rosenfield, corresponds to the measured one. However in the case of the conventional X 20 CrMoV 12 1 and the similar weld metal no more correspondence is found.  相似文献   

17.
The stress and strain state in pressure vessel containing an axial semi-elliptical surface flaw is analyzed by elastic-plastic finite element (FE) calculations. The variation of J along the crack front is presented. Stresses and strains in the vicinity of the surface flaw are compared with those of a compact specimen of the same material at a similar J level. The FE results are taken to examine the ductile crack growth obtained in a vessel test and to discuss the validity of J-controlled crack growth. It is shown that the local constraint of the component affects the crack resistance significantly and that, therefore, JR-curves have to account for the varying triaxiality of the stress state. This improved two parameter approach yields a much better prediction of the stable crack growth and, especially, is able to describe the canoe shape of the surface crack.  相似文献   

18.
The fracture toughness of steels that are susceptible to dynamic strain aging shows a minimum at temperatures higher than the upper shelf starting temperature. This phenomenon is caused simultaneously by strain aging and plastic deformation. The first aim of the present work is to analyze the effect of dynamic strain aging on the fracture toughness values of three pressure vessel steels in the temperature range between room temperature and 400°C. Fracture mechanics tests were carried out on A533 GB, A516 G70 and 304L steels to obtain the following parameters: JIC, CTODm and the J-R curves. These values were compared against those available in the present references, and good agreement was found. Charpy V notch tests were also carried out on A516 G70 steel at the same test temperatures as for the fracture mechanics tests to analyze the effect of the strain rate. The critical wide stretch zones of the 304L steel specimens were also measured to verify another author's hypothesis about a toughness drop at the upper shelf temperature.  相似文献   

19.
This paper contains a critical examination of the present ASTM E813-81 JIc test standard and proposed modifications of this standard. It is suggested that a value J corresponding to a ductile tearing, Δa1, of 0.2 mm be regarded as an engineering approximation of initiation fracture toughness. This amount of ductile tearing is obtained by intersecting the initial part of the J-Δa curve with an intercept line parallel to the blunting line. An improved blunting line has been derived by accounting for the material's strain hardening properties. Finally, the application of the modified JIc procedure will be demonstrated using several materials.  相似文献   

20.
This contribution describes a method for the determination of the J-integral as a function of the load-line displacement for arbitrary specimen geometries.A correspondence could be found between the approximation method and the results determining with the Rice integral by means of a FE-calculation. Using the initiation values of the J-integral as a fracture mechanics parameter determined from the JR-curve, correspond with failure values of double-édged notched tensile specimens and circumferentially notched round tensile specimens of which crack initiation was tantamount to instability. Consequently, it could be proved that the J-integral is a transferable parameter that may be ascertained from simple determinable deformation values. The application to real components seems to be promising, due to these good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号