首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Epidemiological studies have shown that steroidal as well as non-steroidal anti-inflammatory drugs lower the risk of developing Alzheimer's Disease (AD). A suppressive effect of these anti-inflammatory drugs on local inflammatory events in AD brains has been suggested, however the mechanisms responsible are still unknown. In this study we investigated at cellular level the influence of two anti-inflammatory drugs-dexamethasone and indomethacin--and an experimental specific cyclooxygenase-2 inhibitor, BF389, on the production of the pro-inflammatory cytokine IL-6 and the inflammatory mediator PGE2 by human astrocytes. Two human post-mortem astrocyte cultures (A157 and A295) and astroglioma cell lines (U251 and U373 MG) were found to secrete considerable amounts of IL-6 upon stimulation with IL-1beta. The glucocorticoid dexamethasone inhibited the IL-1beta-activated release of IL-6 from the postmortem astrocyte cultures A157 and A295 and from the astroglioma cell lines. The non-specific cyclooxygenase inhibitor indomethacin and BF389 only suppressed the IL-6 release by post-mortem astrocyte culture A157. This post-mortem astrocyte culture was found to produce large amounts of PGE2 upon stimulation with IL-1beta, whereas in the supernatants of the postmortem astrocyte culture A295 and the astroglioma cell lines, low PGE2 concentrations were detected. Addition of exogenous PGE2 prevented the inhibitory effect of indomethacin and BF389 on the IL-1beta-activated IL-6 release from A157 astrocytes and largely potentiated the IL-1-induced release of IL-6 from all astrocytes/astroglioma cells tested. Dexamethasone also inhibited the PGE2 release from the astrocytes and astroglioma cells, however the inhibitory effect of dexamethasone on the IL-1beta-activated IL-6 release could not be prevented by the addition of PGE2. The observed reduction of IL-6 and/or PGE2 from astrocytes may be involved in the mechanism underlying the beneficial effects of these drugs in AD.  相似文献   

2.
The cytotoxicity of a recombinant interleukin 6 (IL-6)-diphtheria toxin (DT) fusion protein towards human myeloma cell lines was investigated. DAB389-IL-6 inhibited protein synthesis and methylcellulose colony formation by U266 myeloma cells. In the clonogenic assay, the fusion protein approached the level of cytotoxicity achieved by native DT. The specificity of killing by DAB389-IL-6 was demonstrated by inhibition of cytotoxicity by a molar excess of free rhIL-6. The effect of DAB389-IL-6 on colony formation by six OCI-My cell lines was assessed. Similar to U266 cells, colony growth by the OCI-My 5 and -My 2 cell lines was inhibited in a simple dose dependent manner. However, a biphasic effect was observed for the IL-6 dependent OCI-My 4 cells; DAB389-IL-6 stimulated colony formation at low (< or = 10(-11) M) concentrations, yet was inhibitory at higher doses. Three other cell lines whose growth was not altered by IL-6 were relatively unaffected by DAB389-IL-6, despite their sensitivity to native DT. Flow cytometric analysis for IL-6 receptor expression using phycoerythrin-conjugated IL-6 demonstrated specific binding sites on both DAB389-IL-6 sensitive and certain insensitive cell lines, suggesting that other factors in addition to the expression of IL-6 receptors are involved in killing by the fusion toxin. Despite evidence for a role of IL-6 in myeloid cell development, normal bone marrow was insensitive to the IL-6 fusion toxin. In cultures containing both normal bone marrow and U266 cells DAB389-IL-6 effectively inhibited the growth of U266 myeloma colonies but had little effect on normal bone marrow erythroid, granulocyte and mixed erythroid/granulocyte colony growth. From these experiments we conclude that DAB389-IL-6 is specifically cytotoxic towards a subset of IL-6-responsive human myeloma cell lines and may be useful, in some cases, in the selective elimination of tumour cells from mixed populations of normal and malignant cells.  相似文献   

3.
IL-12 is a novel cytokine with interesting features regarding its potential usefulness in peripheral blood stem cell transplantation and leukemia immunotherapy. We used cryopreserved leukemia cells of 18 patients with acute myelogenous (n= 14) or lymphocytic (n= 4) leukemia to investigate the effect of IL-12, alone or in combination with IL-2, on the cytolytic activity of NK cells against human leukemia targets. Effector cells were peripheral blood mononuclear cells from healthy donors which were depleted from CD3+ T cells by immunomagnetic separation. CD3-negative effector cells (mainly CD56+ NK cells) were treated for 24 h with various concentrations of IL-2 (100 U/ml to 1000 U/ml) and IL-12 (1 U/ml to 100 U/ml). Cytotoxicity was measured in a 4 h 51Cr-release assay. Whereas a two-fold enhancement of cytotoxic activity was observed after incubation with optimal doses of IL-2 or IL-12, the combination of both cytokines (500 U/ml IL-2, 100 U/ml IL-12) increased the lytic activity more than six-fold. This effect was accompanied by increased expression of cellular adhesion molecules (CD2, CD18) and CD25 on CD56+ effector cells. Of 18 leukemias investigated, five were completely resistant to lysis by effector cells activated with IL-2 or IL-12 alone. In three of these five cases, however, high cytolytic activity was observed after coincubation with IL-2 and IL-12. In comparison to allogeneic NK cells, autologous cells of three patients in remission demonstrated significantly lower cytotoxic activity. No killing of nonmalignant cells (PHA blasts) by allogeneic NK cells was observed. Our data demonstrate that IL-12 can enhance or even induce MHC-unrestricted cytotoxicity of IL-2-activated allogeneic natural killer cells. Since IL-12 has also been shown to have stem-cell mobilizing capacities, it could be used for the recruitment of both stem cells and antileukemic effector cells in the context of peripheral blood stem cell transplantation.  相似文献   

4.
Prostaglandin (PG) biosynthesis by cytokine stimulated normal adult human osteoblast-like (hOB) cells was evaluated by thin layer chromatography, high performance liquid chromatography, and specific immunoassays. PGE2 was the predominant PG formed under all incubation conditions tested. Control samples produced measurable amounts of PGE2, and the measured level of this metabolite increased by 22-fold (from 7 to 152 ng/ml) following a 20 h treatment with the combination of TGF beta and tumor necrosis factor-alpha(TNF). The production of 6-keto-PGF1 alpha (the stable metabolite of prostacyclin) and of PGF2 alpha were each increased by about five-fold (from about 0.5 to 2.5 ng/ml) in samples treated with the cytokines. Thus, TGF beta and TNF exerted a regulation of hOB cell PG biosynthesis that was principally directed towards an increased PGE2 biosynthesis, with lesser effects on the production of other PG metabolites. COX-2 mRNA levels were increased within 2 h of cytokine stimulation, reached a maximum at 6-12 h, and levels had appreciably diminished by 24 h after treatment. Both TGF beta and TNF could independently increase COX-2 mRNA levels and PG biosynthesis. However, the increased production of PGE2 resulting from TNF stimulation was blocked by the addition of an interleukin-1 beta (IL-1 beta) neutralizing antibody, suggesting that TNF regulation of hOB cell PG synthesis was secondary to its capacity to increase hOB cell IL-1 beta production. TGF beta regulation of PG production was not affected by the addition of the neutralizing antibody. These studies support the proposition that PGs can be important autocrine/paracrine mediators of bone biology, whose production by hOB cells is responsively regulated by osteotropic cytokines.  相似文献   

5.
Human glioblastoma multiforme cell lines, brain tumor biopsy tissue, and normal human fetal brain synthesize interleukin (IL)-6 and IL-6 receptor (IL-6R). Neither of these is expressed in human neurons or neuroblastoma cell lines in culture. Astrocytes from fetal brain grown in culture retain the ability to synthesize IL-6 but do not express IL-6R as inferred from RT-PCR and Southern blot studies. Coexpression of IL-6 and IL-6R in the glioblastoma cell line U87MG is confirmed by immunofluorescence staining. Both specific monoclonal antibodies against IL-6 and IL-6R and antisense oligonucleotide to IL-6 mRNA inhibit the growth of U87MG cells in culture, suggesting the existence of a functional autocrine growth loop. Anti-IL-6 antibodies also inhibit the growth of glioblastoma cell lines U373 and U118. The expression of IL-6 by human fetal astrocytes in culture is highly suggestive of its role as an oncofetal protein responsible for rapid proliferation of fetal and tumor cells but not cells of adult brain.  相似文献   

6.
Under serum-free conditions the beta-glucan receptor of mouse macrophages mediates phagocytosis of beta-1,3-D-glucan-coated microbeads (diameter 2 microns). IFN-gamma increases the phagocytic function of the beta-glucan receptor in a dose-dependent manner, giving the plateau level at 100 U/ml. Maximum activity appears 9 h after addition of IFN-gamma to the cells. The effect disappears within 24 h. The effect of IFN-gamma may be a result of augmented receptor synthesis since treatment with cycloheximide reduces the phagocytosis. IL-1 also increases the phagocytic function of the beta-glucan receptor giving a dose-dependent response and with the plateau level reached at 10 U/ml. Maximum activity is found 4 h after addition of IL-1 to macrophages. The effect disappears within 24 h. TNF does not alter the phagocytic function of the beta-glucan receptor, but TNF together with IL-1 prolongs the effect of IL-1. PGE2 reduces the phagocytic function of the beta-glucan receptor. Maximum reduction is achieved with 8 ng/ml. Time-course studies show the lowest phagocytic activity 9 h after addition of PGE2 to the cells.  相似文献   

7.
Malignant glioblastomas grow very rapidly and are generally resistant to either DNA-damaging drugs or gamma-irradiation. If tumor cells could be made more susceptible to cell death with treatments, this would clearly represent a significant improvement in the success of treatment. Recently, telomerase has become a focus of interest among oncologists as a target for treating cancer cells. Telomerase elongates telomeric DNA repeats (TTAGGG)n and is important in protecting and replicating DNA. The vast majority of tumor cells, indeed, express telomerase activity whereas normal somatic cells, except for a few cells, do not. Since telomerase is essential for protecting DNA, we may be able to make tumors more sensitive to treatments with DNA-damaging drugs by inhibiting telomerase activity. In this study, we used cis-diamminedichloroplatinum (cisplatin)-sensitive U87-MG cells and cisplatin-resistant U251-MG of human malignant glioblastoma cell lines. U87-MG cells did not express telomerase activity, whereas telomerase was highly detected in U251-MG cells. Interestingly, inhibition of telomerase with an antisense telomerase expression vector not only decreased telomerase activity but also increased susceptibility to cisplatin-induced apoptotic cell death in U251-MG cells. These findings suggest that treatment with antisense telomerase may represent a new chemosensitisation for tumors resistant to anticancer drugs.  相似文献   

8.
9.
Oligodendrocytes and their myelin membranes are the apparent target of the autoimmune response that characterizes the human adult central nervous system-demyelinating disease multiple sclerosis. Human oligodendrocytes do not express MHC class II molecules, a requirement for MHC-restricted injury mediated by myelin-reactive CD4+ T cells, the cell type implicated in initiating the disease process. In this study we observed that human adult central nervous system-derived oligodendrocytes can be susceptible to non-MHC-restricted lysis mediated by myelin basic protein-reactive CD4+ T cell lines. Cytotoxicity was significantly greater (37 +/- 4 vs 7 +/- 3%) with cell lines in which a high proportion of cells (mean, 28 +/- 6%) expressed CD56 compared with cytotoxicity mediated by low CD56 cell lines (8 +/- 2%). High CD56 cell lines, when rested in IL-2, lost cytotoxic activity and had reduced expression of CD56 (mean, 5 +/- 2%). CD4+ T cells isolated from short term (3-day) anti-CD3/IL-2-activated mononuclear cell cultures did not express CD56 and were not cytotoxic to oligodendrocytes unless lectin was added. In contrast, an enriched population of non-T cells extracted from the same activated MNC cultures expressed CD56 as well as other NK cell-associated surface molecules and was cytotoxic. These results indicate the potential susceptibility of human oligodendrocytes to non-MHC-restricted injury mediated by both Ag-reactive and nonspecific cellular immune effector cells, with CD56 expression being a common feature of the effector cells.  相似文献   

10.
The tumoricidal activity of activated macrophages has been attributed largely to the release of tumor necrosis factor (TNF), or to the production of reactive oxygen or nitrogen intermediates. The L929 tumor cell line (a murine fibroblast-like cell) when treated with actinomycin D (ActD) has been used to measure TNF alpha cytotoxicity. In the present study, we determined the cytotoxic activity of BCG-activated peritoneal macrophages against ActD-untreated L929 tumor cells. Furthermore, we measured the production of hydrogen peroxide (H2O2), nitric oxide (NO) and TNF by macrophages cultured in the presence or absence of L929 cells. As expected, BCG-activated macrophages produced significant amounts of H2O2 (16.0 +/- 3.0 microM), TNF (512 U/ml) and NO (71.5 +/- 3.2 microM). TNF (256 U/ml) and NO (78.9 +/- 9.7 microM) production was unchanged in co-cultures of L929 cells with BCG-activated macrophages but H2O2 production was totally inhibited. The cytotoxic activity was dependent on NO release since L-NAME (2.5, 5.0 and 10 mM), which blocks NO synthase, inhibited the killing of L929 cells. Addition of anti-TNF (20 micrograms/ml) antibodies to the cultures did not affect the tumoricidal activity of macrophages. Our results indicate that macrophage-mediated killing of L929 cells is largely dependent on NO production but independent of H2O2 or TNF release.  相似文献   

11.
It has been reported that cellular oxidative stress induces apoptosis, that may be inhibited by scavengers of reactive oxygen intermediates (ROIs). Superoxide dismutase (SOD) is among the most active scavengers of ROIs, providing defense against the cellular oxidative stress. Fas antigen and tumor necrosis factor (TNF) receptor are the cell surface proteins, stimulation of which induces apoptosis of keratinocytes. Using SV40-transformed human keratinocytes (SVHK cells), we investigated the effects of anti-Fas antibody and TNF-alpha on the SOD activity. Treatment of SVHK cells with anti-Fas antibody or TNF-alpha in the presence of interferon-gamma (IFN-gamma) resulted in an increase in Mn-SOD activity, Cu,Zn-SOD activity was not affected. In the absence of IFN-gamma, no increase in Mn-SOD activity was detected. The induction of IFN-gamma-dependent Mn-SOD activity by anti-Fas antibody or TNF-alpha was concentration-dependent; the maximal effect was observed at 1-10 micrograms/ml and 5-10 ng/ml, respectively. The increase in Mn-SOD activity was observed at 6 h following the treatment and remained for at least 48 h. Northern blot analyses showed that Mn-SOD mRNA increased within 3 h without a significant change in Cu,Zn-SOD mRNA. The addition of both anti-Fas antibody and TNF-alpha in the presence of IFN-gamma resulted in an additive increase in Mn-SOD activity. Although the addition of 12-o-tetradecanoylphorbol-13-acetate (TPA) singly to the incubation medium had no effect on either Mn-, or Cu,Zn-SOD activity, it significantly augmented the IFN-gamma-dependent induction of Mn-SOD activity by anti-Fas antibody or by TNF-alpha. The protein kinase C inhibitor, 1-(5-isoquinoline-sulfonyl)-2-methyl piperazine dihydrochloride (H-7), significantly inhibited the TPA-dependent increase in Mn-SOD activity. These results indicate that the stimulation of Fas antigen or TNF receptor increases Mn-SOD activity of SVHK cells in the presence of IFN-gamma and that TPA augments the process through the activation of protein kinase C.  相似文献   

12.
Human SK-N-AS neuroblastoma and U-87MG glioblastoma cell lines were found to secrete relatively high levels of glial cell line-derived neurotrophic factor (GDNF). In response to growth factors, cytokines, and pharmacophores, the two cell lines differentially regulated GDNF release. A 24-hr exposure to tumor necrosis factor-alpha (TNFalpha; 10 ng/ml) or interleukin-1beta (IL-1,; 10 ng/ml) induced GDNF release in U-87MG cells, but repressed GDNF release from SK-N-AS cells. Fibroblast growth factors (FGF)-1, -2, and -9 (50 ng/ml), the prostaglandins PGA2, PGE2, and PGI2 (10 microM), phorbol 12,13-didecanoate (PDD; 10 nM), okadaic acid (10 nM), dexamethasone (1 microM), and vitamin D3 (1 microm) also differentially effected GDNF release from U-87MG and SK-N-AS cells. A result shared by both cell lines, was a two- to threefold increase in GDNF release by db-cAMP (1 mM), or forskolin (10 microM). In general, analysis of steady-state GDNF mRNA levels correlated with changes in extracellular GDNF levels in U-87MG cells but remained static in SK-N-AS cells. The data suggest that human GDNF synthesis/release can be regulated by numerous factors, signaling through multiple and diverse secondary messenger systems. Furthermore, we provide evidence of differential regulation of human GDNF synthesis/release in cells of glial (U-87MG) and neuronal (SK-N-AS) origin.  相似文献   

13.
We studied whether inducers of cell differentiation alone could have cytotoxic effect on the promonocytic U937 and Mono Mac 6 cells in vitro. The cells were incubated with standard differentiating doses of interferon (IFN)-gamma, dibutyryl cAMP (Bt2cAMP) or the phorbol ester phorbol-12-myristate-13-acetate (PMA), with or without lipopolysaccharide (LPS), and both protein synthesis and viability were examined. In both U937 and Mono Mac 6 cells the incorporation of [3H]leucine was significantly reduced after PMA plus LPS stimulation, but not after IFN-gamma stimulation, when compared with controls. For U937 cells there was also reduced incorporation after Bt2cAMP stimulation. Trypan blue exclusion experiments and the number of cells remaining in the cultures indicated that Bt2cAMP-, PMA- and/or LPS-stimulated, but not IFN-gamma-stimulated, cells were less viable than unstimulated U937 or Mono Mac 6 cells. The results suggest that Bt2cAMP, PMA and LPS, but not IFN-gamma, are cytotoxic towards promonocytic cancer cell lines in vitro.  相似文献   

14.
15.
BACKGROUND: Human natural killer (NK) cells mediate spontaneous cytotoxicity against tumor cells and represent the main precursors of lymphokine-activated killer (LAK) cell activity. A comparison of some aspects of NK and LAK cell activity was undertaken in 85 preoperative patients with breast cancer and 75 healthy donors. METHODS: NK cell activity (tested in 18-hour cultures of effector peripheral blood mononuclear cells [PBMC] with K562 or MOLT-4 tumor target cells) was significantly diminished in these patients as it was the fully mature LAK cell activity (i.e., interleukin-2 (IL-2)-induced cytotoxicity in PBMC) against NK resistant target cells. Using immunoenzymatic methods we showed that the reduced NK cell activity was due to abnormally high levels of prostaglandin E2 (PGE2) produced by monocytes in culture. RESULTS: PGE2 was found to suppress the production of IL-2 in these cultures. Removal of monocytes from PBMC restored to almost normal levels the deficient NK and LAK cell activity in patients with breast cancer and was also associated with a normalization in the levels of PGE2 and IL-2. Indomethacin and gamma-interferon (IFN-gamma) increased the NK and LAK cell activity in these patients up to the levels of healthy donors. When highly purified CD56+ cells (obtained by an immunomagnetic isolation technique) were used as effector cells, no differences in LAK cell activity could be noticed between healthy donors and patients with cancer. FACS and northern blot analyses demonstrated a PGE2-mediated down-regulation of IL-2 receptor (IL-2R) expression on CD56+ cells that correlated with reduced LAK cell activity. This inhibitory effect of PGE2 was noticeable in long-term LAK cultures and was abrogated in the presence of IFN-gamma or indomethacin. CONCLUSION: This study may have important implications in the potentiation of NK and LAK cell activity for immunotherapeutic protocols in patients with breast cancer.  相似文献   

16.
Human lung cancers overexpress several cell-membrane complement inhibitory proteins (CIP). These complement inhibitory proteins are membrane cofactor protein (CD46), decay-accelerating factor (DAF; CD55), and CD59 (protectin). These cell-membrane proteins have a wide normal tissue distribution, are known to protect normal host cells from homologous complement-mediated lysis, and are thought to facilitate tumor escape from immunosurveillance. To study whether proinflammatory cytokines that are involved in cancer growth can modulate cell-membrane CIP expression in lung cancer cells, we studied the effect of interleukin (IL)-1alpha, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma on two human lung cancer cell lines. ChaGo K-1 and NCI-H596 cell lines, undifferentiated carcinoma and lung adenosquamous carcinoma, respectively, were stimulated with different cytokines, and the effects of incubation time and cytokine concentration on cell-membrane CIP expression were studied. Cell-membrane CIP expression was evaluated using flow cytometry and cytokine effect was calculated as percent change in mean fluorescence intensity of each CIP molecule from its untreated control. We found that DAF was the lung cancer cell-membrane CIP molecule that was the most responsive to cytokine stimulation. Maximal stimulatory effect was usually noted 72 h after a cytokine was introduced. In ChaGo K-1 and NCI-H596 lung cancer cell lines, IL-1alpha and TNF-alpha increased DAF expression. IL-1alpha (100 U/ml/72 h) increased DAF expression up to a maximal mean of 45 and 48%, respectively, in comparison with untreated cells. TNF-alpha (1, 000 U/ml/72 h) increased DAF expression up to a mean of 131 and 46%, respectively. IFN-gamma (1 U/ml/72 h) increased DAF expression in NCI-H596 cells up to a mean of 100%, but had a slight inhibitory effect on DAF expression in ChaGo K-1 cells, decreasing expression by a mean of 17% in comparison with untreated cells. We conclude that cell-membrane DAF expression in the studied human lung cancer cell lines is modulated by IL-1alpha, TNF-alpha, and IFN-gamma, and speculate that cytokine-mediated modulation of cell-membrane DAF in human lung cancer cells might affect lung cancer cell biology.  相似文献   

17.
The effects of tumor necrosis factor-alpha (TNF alpha) on glucose uptake and glycogen synthase (GS) activity were studied in human skeletal muscle cell cultures from nondiabetic and type 2 diabetic subjects. In nondiabetic muscle cells, acute (90-min) exposure to TNF alpha (5 ng/ml) stimulated glucose uptake (73 +/- 14% increase) to a greater extent than insulin (37 +/- 4%; P < 0.02). The acute uptake response to TNF alpha in diabetic cells (51 +/- 6% increase) was also greater than that to insulin (31 +/- 3%; P < 0.05). Prolonged (24-h) exposure of nondiabetic muscle cells to TNF alpha resulted in a further stimulation of uptake (152 +/- 31%; P < 0.05), whereas the increase in cells from type 2 diabetics was not significant compared with that in cells receiving acute treatment. After TNF alpha treatment, the level of glucose transporter-1 protein was elevated in nondiabetic (4.6-fold increase) and type 2 (1.7-fold) cells. Acute TNF alpha treatment had no effect on the fractional velocity of GS in either nondiabetic or type 2 cells. Prolonged exposure reduced the GS fractional velocity in both nondiabetic and diabetic cells. In summary, both acute and prolonged treatment with TNF alpha up-regulate glucose uptake activity in cultured human muscle cells, but reduce GS activity. Increased skeletal muscle glucose uptake in conditions of TNF alpha excess may serve as a compensatory mechanism in the insulin resistance of type 2 diabetes.  相似文献   

18.
Flavopiridol (NSC 649890, L86-8275), a potent inhibitor of cyclin-dependent kinase 1/p34cdc2 phosphorylation and kinase activity, is currently undergoing Phase I clinical testing as a potential antineoplastic agent. Previous studies have suggested that flavopiridol is cytostatic but not cytotoxic when applied to exponentially growing cells. In the present study, various human tumor cell lines were assayed for trypan blue exclusion and ability to form colonies after exposure to flavopiridol under a variety of growth conditions. When log phase A549 non-small cell lung cancer cells were examined 72 h after the start of a 24-h flavopiridol exposure, as many as 90% of the cells accumulated trypan blue. A 24-h exposure to 250-300 nM resulted in trypan blue uptake in 50% of A549 cells at 72 h and a 50% reduction in colony formation. Similar results were observed in HCT8 ileocecal adenocarcinoma, T98G glioblastoma, MCF-7 breast adenocarcinoma, and HL-60 leukemia cells. With A549 cells, identical results were obtained in actively growing logarithmic phase cells and growth-arrested confluent cells. Treatment with the DNA synthesis inhibitor aphidicolin only minimally affected the cytotoxicity of flavopiridol. In contrast, the RNA synthesis inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole or the protein synthesis inhibitor cycloheximide reduced the cytotoxicity of flavopiridol. These results suggest that: (a) flavopiridol is not only cytostatic, but also cytotoxic to a variety of human tumor cell lines; (b) flavopiridol is equally active against cycling and noncycling A549 cells; and (c) RNA and protein synthesis appear to play a role in flavopiridol-induced cytotoxicity.  相似文献   

19.
The effects of tumor necrosis factor-alpha (TNF-alpha) on cultured human umbilical vein endothelial cells (EC) and five cancer cell lines, A549, ME180, A2780, KURAMOCHI, and Hela, were compared. While A549, A2780, KURAMOCHI, and Hela cells were fairly resistant to the cytolytic effects of TNF-alpha, ME180 cells were sensitive. EC were also less sensitive to TNF-alpha than ME180 cells as judged by the viability of individual cells and by the release of lactate dehydrogenase (LDH) into the medium. Manganese superoxide dismutase (Mn-SOD) was markedly induced by these cytokines in EC and in A549 cells but not in ME180 cells. The levels of Mn-SOD in the conditioned medium of EC were dramatically increased after stimulation with cytokines, whereas those in ME180 and A549 cells were relatively low. The amount of Mn-SOD released appears to be comparable to that from cells lysed by other means. Immunoblot analysis of Mn-SOD in the medium showed that the molecular mass of the immunoreactive protein was the same as mitochondrial Mn-SOD, indicating that no proteolysis had occurred. These data suggest that in vivo the TNF-alpha produced by cancer cells may induce Mn-SOD in vascular endothelial cells, resulting in release of a relatively large amount of this protein into the serum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号