首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用SiC衬底0.25 μm AlGaN/GaN高电子迁移率晶体管(HEMT)工艺,研制了一款X波段GaN单片微波集成电路(MMIC)低噪声放大器(LNA).放大器采用三级级联拓扑,第一级采用源极电感匹配,在确保良好的输入回波损耗的同时优化放大器噪声系数;第三级采用电阻电容串联负反馈匹配,在尽量降低噪声系数的前提下,保证良好的增益平坦度、输出端口回波损耗以及输出功率.在片测试表明,在10 V漏级电压、-2 V栅极电压偏置下,放大器静态电流为60 mA,8~12 GHz内增益为22.5 dB,增益平坦度为±1.2 dB,输入输出回波损耗均优于-11 dB,噪声系数小于1.55 dB,1 dB增益压缩点输出功率大于11.9 dBm,其芯片尺寸为2.2 mm×1.1 mm.装配测试表明,噪声系数典型值小于1.6 dB,可承受33 dBm连续波输入功率.该X波段GaN低噪声放大器与高功率放大器工艺兼容,可以实现多功能集成,具有广阔的工程应用前景.  相似文献   

2.
采用0.25μm AlGaAs/InGaAs/GaAs PHEMT工艺技术,研制出了6~18GHz三级MMIC全匹配宽带功率放大器单片.在6~18GHz的工作频率下,放大器的平均功率增益为19dB,输出功率大于33.3dBm,在10GHz处有最大输出功率34.7dBm,输入回波损耗S11低于-10dB,输出回波损耗S22低于-6dB.与报道的C-X-Ku频段宽带功率放大器相比,有较好的功率平坦度.  相似文献   

3.
采用0.25μm AlGaAs/InGaAs/GaAs PHEMT工艺技术,研制出了6~18GHz三级MMIC全匹配宽带功率放大器单片.在6~18GHz的工作频率下,放大器的平均功率增益为19dB,输出功率大于33.3dBm,在10GHz处有最大输出功率34.7dBm,输入回波损耗S11低于-10dB,输出回波损耗S22低于-6dB.与报道的C-X-Ku频段宽带功率放大器相比,有较好的功率平坦度.  相似文献   

4.
采用噪声抵消及多重功耗优化技术,提出了一种超宽带低噪声低功耗放大器。它主要包括采用RL网络的共栅输入级、电流复用型噪声抵消级、放大输出级以及偏置电路四个部分。验证结果表明,该放大器,在2-6GHz频带内,增益(S21)可以在14dB以上;输入回波损耗(S11)小于-10dB;输出回波损耗(S22)小于-25dB;噪声系数(NF)小于3.2dB;在3.8V的工作电压下,功耗仅为14mW。  相似文献   

5.
与单端结构相比平衡式放大器具有更好的输入、输出回波损耗,更低的噪声系数,同时1dB压缩点提高3dB,IM3提高6dB,动态范围增加一倍。本文中,每一个单端放大器采用四级级联的方式以在宽频带范围内获得高增益。在59~64GHz范围内,平衡式放大器的小信号增益>20dB;输入、输出回波损耗均<-12dB;60GHz处,输出1dB压缩点达到10.5dBm;噪声系数的仿真结果<3.9dB。芯片采用0.15μm GaAs pHEMT实现,面积为2.25mm×1.7mm。  相似文献   

6.
基于砷化镓(GaAs)赝晶型高电子迁移率晶体管(PHEMT)工艺,研制了一款25~45 GHz宽带单片微波集成电路(MMIC)低噪声放大器。该放大器采用三级级联的双电源结构,前两级在确保良好的输入回波损耗的同时优化了放大器的噪声;末级采用最大增益的匹配方式,保证了良好的增益平坦度、输出端口回波损耗以及输出功率。此外还对源电感和宽带匹配都进行了优化,实现了低噪声下的宽带输出。在片测试表明,在栅、漏偏置电压分别为-0.38 V和3 V,电流为60 mA的工作条件下,该放大器在25~45 GHz频带内噪声系数小于2 dB,增益为(22±1.5) dB,输入、输出电压驻波比典型值为2:1,1 dB增益压缩输出功率(P-1 dB)典型值为10 dBm。该低噪声放大器可以用于宽带毫米波收发系统。  相似文献   

7.
采用OMMIC公司提供的0.2μm GaAs PHEMT工艺(fT=60 GHz)设计并实现了一种适用于宽带无线通信系统接收前端的低噪声放大器。在3.1~10.6 GHz的频带内测试结果如下:最高增益为13 dB;增益波动<2dB;输入回波损耗S11<-11 dB;输出回波损耗S22<-16 dB;噪声系数NF<3.9 dB。5 V电源供电,功耗为120mW。芯片面积为0.5 mm×0.9 mm。与近期公开发表的宽带低噪声放大器测试结果相比较,本电路结构具有芯片面积小、工作带宽大、噪声系数低的优点。  相似文献   

8.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计并制备了一款2~18 GHz的超宽带低噪声放大器(LNA)单片微波集成电路(MMIC)。该款放大器具有两级共源共栅级联结构,通过负反馈实现了超宽带内的增益平坦设计。在共栅晶体管的栅极增加接地电容,提高了放大器的高频输出阻抗,进而拓宽了带宽,提高了高频增益,并降低了噪声。在片测试结果表明,在5 V单电源电压下,在2~18 GHz内该低噪声放大器小信号增益约为26.5 dB,增益平坦度小于±1 dB,1 dB压缩点输出功率大于13.5 dBm,噪声系数小于1.5 dB,输入、输出回波损耗均小于-10 dB,工作电流为100 mA,芯片面积为2 mm×1 mm。该超宽带低噪声放大器可应用于雷达接收机系统中,有利于接收机带宽、噪声系数和体积等的优化。  相似文献   

9.
2dB噪声系数的Ka波段宽带高增益单片低噪声放大器   总被引:1,自引:1,他引:0  
报道了一种基于商用0.15um赝配高电子迁移率晶体管工艺的单片低噪声放大器,工作频率范围为23~36GHz.它采用自偏置结构.对晶体管栅宽进行了优化设计减小栅极电阻,以得到低的噪声系数.采用吸收回路和加电阻电容网络的直流偏置结构提高电路稳定性,用多谐振点方法和负反馈技术扩展带宽.测试结果表明,其噪声系数低于2.0dB,在31GHz处,噪声系数仅为1.6dB.在整个工作频带范崮内,增益大于26dB,输入回波损耗大于11dB,输出回波损耗大于13dB.36GHz处的ldB压缩点输出功率为14dBm.芯片尺寸为2.4mm×1mm.  相似文献   

10.
提出了一种基于双反馈电流复用结构的新型CMOS超宽带(UWB)低噪声放大器(LNA),放大器工作在2~12 GHz的超宽带频段,详细分析了输入输出匹配、增益和噪声系数的性能。设计采用TSMC 0.18μm RF CMOS工艺,在1.4 V工作电压下,放大器的直流功耗约为13mW(包括缓冲级)。仿真结果表明,在2~12 GHz频带范围内,功率增益为15.6±1.4 dB,输入、输出回波损耗分别低于-10.4和-11.5 dB,噪声系数(NF)低于3 dB(最小值为1.96 dB),三阶交调点IIP3为-12 dBm,芯片版图面积约为712μm×614μm。  相似文献   

11.
利用90-nm InAlAs/InGaAs/InP HEMT工艺设计实现了两款D波段(110~170 GHz)单片微波集成电路放大器。两款放大器均采用共源结构,布线选取微带线。基于器件A设计的三级放大器A在片测试结果表明:最大小信号增益为11.2 dB@140 GHz,3 dB带宽为16 GHz,芯片面积2.6×1.2 mm2。基于器件B设计的两级放大器B在片测试结果表明:最大小信号增益为15.8 dB@139 GHz,3dB带宽12 GHz,在130~150 GHz频带范围内增益大于10 dB,芯片面积1.7×0.8 mm2,带内最小噪声为4.4 dB、相关增益15 dB@141 GHz,平均噪声系数约为5.2 dB。放大器B具有高的单级增益、相对高的增益面积比以及较好的噪声系数。该放大器芯片的设计实现对于构建D波段接收前端具有借鉴意义。  相似文献   

12.
5~22GHz平坦高增益单片低噪声放大器   总被引:1,自引:1,他引:1  
使用0.25μm G aA s PHEM T工艺技术,设计和制造了性能优良的5-22 GH z两级并联反馈单片低噪声放大器。在工作频率5-22 GH z内,测得增益G≥18 dB,带内增益波动ΔG≤±0.35 dB,噪声系数N F≤3.2 dB,输入输出驻波V SW R≤1.7,最小分贝压缩点输出功率P1dB≥10.5 dBm,电流增益效率达2.77 mA/dB。测试结果验证了设计的正确性。  相似文献   

13.
基于0.15μm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,成功研制了一款30~34 GHz频带内具有带外抑制特性的低功耗低噪声放大器(LNA)微波单片集成电路(MMIC)。该MMIC集成了滤波器和LNA,其中滤波器采用陷波器结构,可实现较低的插入损耗和较好的带外抑制特性;LNA采用单电源和电流复用结构,实现较高的增益和较低的功耗。测试结果表明,该MMIC芯片在30~34 GHz频带内,增益大于28 dB,噪声系数小于2.8 dB,功耗小于60 mW,在17~19 GHz频带内带外抑制比小于-35 dBc。芯片尺寸为2.40 mm×1.00 mm。该LNA MMIC可应用于毫米波T/R系统中。  相似文献   

14.
报道了一款采用0.15μm GaAs功率MMIC工艺研制的Ka波段功率放大器芯片。芯片采用四级放大拓扑结构,在29~32GHz频带范围内6V工作条件下线性增益25dB,线性增益平坦度小于±0.75dB;饱和输出功率大于5W,饱和效率大于20%,功率增益大于22dB;1dB压缩点输出功率大于36.5dBm,效率大于18%。  相似文献   

15.
利用0.25μmGaAsPHEMT低噪声工艺,设计并制造了2种毫米波大动态宽带单片低噪声放大器。第1种为低增益大动态低噪声放大器,单电源+5V工作,测得在26~40GHz范围内,增益G=10±0.5dB,噪声系数NF≤2.2dB,1分贝压缩点输出功率P1dB≥15dBm;第2种为低压大动态低噪声放大器,工作电压为3.6V,静态电流0.6A(输出功率饱和时,动态直流电流约为0.9A),在28~35GHz范围内,测得增益G=14~17dB,噪声系数约4.0dB,1分贝压缩点输出功率P1dB≥24.5dBm,最大饱和输出功率≥26.8dBm,附加效率约10%~13.6%。结果中还给出了2种放大器直接级联的情况。  相似文献   

16.
X波段及DBS接收用PHEMT单片低噪声放大器   总被引:3,自引:0,他引:3  
报道了X波段及DBS接收用单片低噪声放大器的研制结果。利用CAD软件对单片电路进行优化设计,设计工作包括MBE材料、PHEMT器件和单片电路三部分。在研制过程中,开展了关键工艺的专题研究。研究结果为:单级单片放大器在10:5-11.6GHz范围内,NF≤1.82dB,G≥7.72dB;在11.7-12.2GHz范围内,NF≤1.80dB,G≥6.8dB;双级放大器在10.4-11.1GHz范围内,NF≤1.96dB,G≥15.3dB,最低噪声系数为1.63dB,最高增益为16.07dB。  相似文献   

17.
介绍了一种利用SiGe技术制作的低噪声SiGe微波单片放大电路(MMIC)。该电路以达林顿结构的形式级联,由两个异质结双极型晶体管(HBT)和4个电阻组成;HBT采用准自对准结构,其SiGe基区为非选择性外延。在1 GHz频率下,电路噪声为1.59 dB,功率增益为14.3 dB,输入驻波比为1.6,输出驻波比为2.0。  相似文献   

18.
A small signal S-parameter and noise model for the cascode MODFET has been validated up to 120 GHz, allowing predictable monolithic microwave integrated circuit (MMIC) design up to W-band. The potential of coplanar waveguide technology to build compact, high performance system modules is demonstrated by means of passive and active MMIC components. The realized passive structures comprise a Wilkinson combiner/divider and a capacitively loaded ultra miniature branch line coupler. For both building blocks, very good agreement between the measured and modeled data is achieved up to 120 GHz. Based on the accurate design database, two versions of compact integrated amplifiers utilizing cascode devices for application in the 90-120 GHz frequency range were designed and fabricated. The MMICs have 26.3 dB and 20 dB gain at 91 GHz and 110 GHz, respectively. A noise figure of 6.4 dB was measured at 110 GHz. The 90-100 GHz amplifier was integrated with an MMIC tunable oscillator resulting in a W-band source delivering more than 6 dBm output power from 94 to 98 GHz  相似文献   

19.
A MMIC 77-GHz two-stage power amplifier (PA) is reported in this letter. This MMIC chip demonstrated a measured small signal gain of over 10 dB from 75 GHz to 80 GHz with 18.5-dBm output power at 1 dB compression. The maximum small signal gain is above 12 dB from 77 to 78 GHz. The saturated output power is better than 21.5 dBm and the maximum power added efficiency is 10% between 75 GHz and 78 GHz. This chip is fabricated using 0.1-/spl mu/m AlGaAs/InGaAs/GaAs PHEMT MMIC process on 4-mil GaAs substrate. The output power performance is the highest among the reported 4-mil MMIC GaAs HEMT PAs at this frequency and therefore it is suitable for the 77-GHz automotive radar systems and related transmitter applications in W-band.  相似文献   

20.
2~8 GHz微波单片可变增益低噪声放大器   总被引:1,自引:0,他引:1  
报道了一种微波宽带 Ga As单片可变增益低噪声放大器芯片。该芯片采用南京电子器件研究所 76mm圆片 0 .5μm PHEMT标准工艺制作而成。工作频率范围为 2~ 8GHz,在零衰减时 ,整个带内增益大于 2 5d B,噪声系数最大为 3 .5 d B,增益平坦度小于± 0 .75 d B,输入驻波小于 2 .0 ,输出驻波小于 2 .5 ,输出功率大于 1 0d Bm。放大器增益可控大于 3 0 d B。实验发现 ,芯片具有良好的温度特性。该芯片面积为 3 .6mm× 2 .2 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号