首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article addresses the integrated fault estimation (FE) and accommodation problem for continuous-time dynamic systems. First, using a specific system decomposition, we propose a new multi-objective reduced-order FE observer (RFEO), whose application range is wider than the existing adaptive and sliding mode ones. FE performances are further enhanced by introducing slack variables to reduce the conservatism generated by the direct design method. Finally, with the help of both system decomposition and slack variable techniques, a static output feedback fault tolerant controller (SOFFTC) design, whose sufficient condition is given in terms of linear matrix inequalities, is proposed to guarantee the stability of the closed-loop system in the presence of faults. Moreover, the RFEO and the SOFFTC are designed separately, so that their design parameters can be calculated easily. Simulation results of an aircraft application are presented to illustrate our contributions.  相似文献   

2.
This paper proposes a framework of fault estimation observer design in finite‐frequency domain for discrete‐time systems. First, under the multiconstrained idea, a full‐order fault estimation observer in finite‐frequency domain is designed to achieve fault estimation by using the generalized Kalman–Yakubovich–Popov lemma to reduce conservatism generated by the entire frequency domain. Then, a reduced‐order fault estimation observer is constructed, which results in a new fault estimator to realize fault estimation using current output information. Furthermore, by introducing slack variables, improved results on full‐order fault estimation observer and reduced‐order fault estimation observer design with finite‐frequency specifications are obtained such that different Lyapunov matrices can be separately designed for each constraint. Simulation results are presented to illustrate the advantages of the theoretic results obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
当切换系统发生故障时,通常需要依次进行故障诊断和容错控制.为了提高切换系统故障诊断的可靠性和容错控制的及时性,本文提出一种同时故障估计与容错控制方法.针对满足平均驻留时间约束的线性切换系统,首先建立了基于状态观测器的同时故障估计与容错控制器,并将其设计问题转化为了加权H∞性能指标下增广误差系统的多目标求解问题.然后使用平均驻留时间技术和多Lyapunov函数方法设计了故障估计与容错控制器的参数,又通过松弛矩阵方法进一步得到了保守性较低的结果.最后,利用一个例子对本文所提方法进行了仿真,证实了该方法的有效性.  相似文献   

4.
一种故障检测滤波器的多目标优化设计方法   总被引:2,自引:1,他引:1  
提出一种基于观测器的故障检测滤波器的非凸多目标优化设计方法.针对线性时不变动态系统,构建一个由输出观测器和后滤波器组成的故障检测滤波器,将其残差动态特性描述为非凸的双线性矩阵不等式形式.利用双线性矩阵不等式中可完全平方非正定项的上界替代原非正定项,将双线性矩阵不等式转化为一组线性矩阵不等式,进而获得多目标优化问题的可解条件以及观测器增益与后滤波器矩阵的求解方法.仿真算例说明了算法的有效性.  相似文献   

5.
6.
This paper focuses on the fault estimation observer design problem in the finite‐frequency domain for a class of Lipschitz nonlinear multiagent systems subject to system components or actuator fault. First, the relative output estimation error is defined based on the directed communication topology of multiagent systems, and an observer error system is obtained by connecting adaptive fault estimation observer and the state equation of the original system. Then, sufficient conditions for the existence of the fault estimation observer are obtained by using a generalized Kalman‐Yakubovich‐Popov lemma and properties of the matrix trace, which guarantee that the observer error system satisfies robustness performance in the finite‐frequency domain. Meanwhile, the pole assignment method is used to configure the poles of the observer error system in a certain area. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

7.
In this paper, a distributed reduced-order fault estimation observer is studied for both continuous- and discrete-time multi-agent systems with directed communication topologies. Initially, a distributed reduced-order observer is proposed to estimate the occurred faults, which can reduce the number of the fault estimation observer’s order of multi-agent systems. What is more, based on strict dissipativity and pole placement constrains, a multi-constrained design is given to calculate gain matrices of distributed reduced-order observer. Finally, simulation results are presented to demonstrate the effectiveness of the proposed distributed reduced-order fault estimation technique.  相似文献   

8.
The present paper addresses an observer design for fault estimation applied to polynomial linear parameter varying (LPV) systems. The main contribution corresponds to a design to provide the estimation of both actuator and sensor faults acting on the system, modelled as additive faults taking place at any time and simultaneously, inclusively. The observer design includes a boundary factor in order to guarantee the estimation error convergence to zero despite the fault occurrence. Simulation results showing the effectiveness of the proposed observer by considering a riderless bicycle LPV model, which depends on the translational velocity of the vehicle, are provided.  相似文献   

9.
The first part of this paper extends the Nonlinear Generalised Minimum Variance (NGMV) controller to improve the robustness of its control or set-point tracking performance. This is achieved by replacing the Kalman filter included in the original NGMV controller with an observer to minimise the effect of uncertainty, which includes unknown disturbance, modelling error, and faults. The observer design also allows the NGMV controller to be utilised in fault monitoring. More specifically, the second part of this paper obtains the observer gain by solving a multi-objective optimisation problem through the application of a genetic algorithm so that the residual signal becomes sensitive to faults and insensitive to any other uncertainty. The control and fault monitoring performance of the extended NGMV controllers is tested by application to a nonlinear tank model.  相似文献   

10.
非均匀采样数据系统时变故障估计与调节最优集成设计   总被引:1,自引:0,他引:1  
针对一类发生连续时变故障的非均匀采样数据系统,建立了一套主动容错控制最优设计方案. 首先,为了实现基于非均匀离散采样输出对连续故障的估计,同时鉴于现有自适应故障诊断方法无法直接推广于非均匀采样数据系统,提出一种连续时间增广观测器最优设计方法,既能保证故障估计误差快速收敛同时又对外界干扰鲁棒;并且提出一个迭代算法对故障估计延迟与系统鲁棒性进行权衡;进一步地,基于所获得的故障信息,并考虑估计误差和时变故障内采样特性对容错控制带来的不利因素,设计基于状态反馈的非均匀采样容错控制器来快速恢复故障系统性能;最后,通过对四容水箱基准实例的仿真来验证所提方法的有效性.  相似文献   

11.
This paper studies the problem of fault estimation and accommodation for a class of nonlinear time‐varying delay systems using adaptive fault diagnosis observer (AFDO). A novel fast adaptive fault estimation algorithm that does not need the derivative of the output vector is proposed to enhance the performance of fault estimation. Meanwhile, a delay‐dependent criteria is obtained based on free weighting matrix method with the purpose of reducing the conservatism of the AFDO design. On the basis of fault estimation, an observer‐based fault‐tolerant controller is designed to guarantee the stability of the closed‐loop system. In terms of matrix inequality, we derive sufficient conditions for the existence of the adaptive observer and fault‐tolerant controller. Simulation results are presented to illustrate the efficiency of the proposed method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

12.
The problem of fault estimation for a class of non-uniformly sampled-data systems is investigated from the time delay point of view in this paper.Firstly,the output delay approach is employed to model the sampled-data system as a continuous-time one with time-varying delay output.Then,based on the analysis of the inapplicability of the adaptive fault diagnosis observer in such class of time-delay systems,a novel augmented fault estimation observer design method is proposed to guarantee the exponential convergence of the estimation errors.Furthermore,an extension to the case of time varying fault estimation for the noisy sampled-data systems is studied.Finally,simulation results of a flight control system are presented to demonstrate the effectiveness of the proposed method.  相似文献   

13.
This study investigated the observer design schemes for interconnected nonlinear systems with actuator faults, sensor faults, external disturbances, and limited measured resources. A novel effective distributed estimation scheme is presented for the interconnected nonlinear system to estimate the states, faults, and lumped disturbances, simultaneously. To save communication resources and to improve information utilization, an adaptive event condition is designed in the sensor channel, and the triggered values are utilized to design the observer. Especially, to handle the sensor fault, the output is separated into two parts, and the estimation is realized with the help of a normal one. In the first part of this study, a class of interconnected nonlinear systems with partial loss of effectiveness of sensor fault is considered, and an event-based distributed estimation scheme is established. In the second part, a class of more universal feedback interconnected nonlinear with both partial loss sensor fault and bias sensor fault is investigated. An augment system is formulated by an augmented vector composed of state and sensor faults. And then the estimation scheme is realized by utilizing the presented event-based distributed observer. The convergence abilities of both the two conditions are proved and, finally, the estimation performances of the presented observer are verified by a numerical simulation system and an inverted pendulum system.  相似文献   

14.
研究了基于自适应观测器中立时滞系统的故障估计问题. 首先, 本文提出了一种新的快速自适应故障估计算法提升了故障估计的快速性和准确性. 同时, 一个时滞相关的判据用于减少设计过程中的保守性, 特别对于小时滞系统. 然后, 应用线性矩阵不等式技巧, 给出了详细的设计步骤. 最后, 仿真结果验证了所提方法的有效性.  相似文献   

15.
This paper presents a fault detection and isolation scheme for multirate systems with a fast input sampling rate and slower output sampling rates. We design a separate observer for each set of simultaneous measurements with the observer operating at their sampling rate. We use an unknown input observer design to allow state estimation in the presence of disturbances and modelling errors. The observer allows us to estimate the system state and obtain a residual vector to be used in fault detection. Furthermore, we are able to use single-rate methodologies for fault diagnosis. We provide necessary and sufficient conditions for the existence of the observer and the detection of the fault vector. An example is given to illustrate the new fault detection approach and another to demonstrate fault isolation.  相似文献   

16.
基于故障诊断观测器的输出反馈容错控制设计   总被引:1,自引:0,他引:1  
张柯  姜斌 《自动化学报》2010,36(2):274-281
针对自适应故障诊断观测器需要误差系统满足苛刻的严格正实条件(Strictly positive real, SPR)和难于处理输出存在扰动的不确定性系统等问题, 提出了一种新型的增广故障诊断观测器的设计方法, 不仅显著地拓宽了自适应故障诊断观测器的适用范围, 而且其具有处理系统扰动的良好性能. 在故障估计的基础上, 提出了动态输出反馈容错控制的设计方法, 避免了基于观测器的状态反馈容错控制的设计难点. 同时, 故障诊断观测器和输出反馈容错控制是分开设计的, 并且又考虑了各自的性能, 简化了设计过程. 最后, 通过仿真实验验证了所提方法的有效性.  相似文献   

17.
夏静萍  姜斌  张柯 《控制与决策》2019,34(4):727-734
针对一类互联非线性系统,提出一种分布式故障估计观测器设计方法.首先,将状态向量和故障向量进行增广设计,得出等价的增广互联系统;其次,利用互联子系统之间的耦合信息,设计包含关联子系统估计信息的分布式故障估计观测器,用于在线实时估计子系统中出现的故障;再次,提出基于$H_\infty$性能和$L_2-L_\infty$性能的方法求解观测器增益矩阵;最后,通过一个仿真实验表明所提出方法的可行性和有效性.  相似文献   

18.
风力发电系统是复杂的空气动力学系统,有效的故障估计是保证发电系统可靠运行的重要方法.本文基于风力机变参数模型,提出一种基于扩张变参数模型的风力机自适应故障估计方法.首先阐述了风力机健康和故障变参数模型,基于此构造故障扩张模型,并利用线性变换得分块矩阵可观测标准型来完成自适应极点配置,进一步分别在扩张系统为奇、偶阶次下给出观测器设计定理及收敛性证明,从而实现扩张自适应观测器设计.最后,在4.8 MW的风力机标准模型上考虑系统元部件和执行器故障的在线估计.仿真结果验证了本文方法的有效性和可靠性.  相似文献   

19.
This article addresses the design of a multiconstrained robust estimation filter (MREF) for a class of continuous-time nonlinear systems in the presence of input and output disturbances. By constructing an augmented system, the MREF achieves the estimation of both states and faults, under existence conditions that are less restrictive than those associated with existing adaptive fault diagnosis observer (AFDO) and sliding mode observer design. Moreover, a detailed discussion on and comparison with the AFDO design are given. Furthermore, by introducing slack variables, improved results on MREF design are obtained such that different Lyapunov functions can be separately designed for multiple constraints. Simulation results are presented to illustrate our contributions.  相似文献   

20.
This study proposes an improved adaptive fault estimation and accommodation algorithm for a hypersonic flight vehicle that uses an interval type‐2 Takagi‐Sugeno fuzzy model and a quantum switching module. First, an interval type‐2 Takagi‐Sugeno fuzzy model for the hypersonic flight vehicle system with elevator faults is developed to process the nonlinearity and parameter uncertainties. An improved adaptive fault estimation algorithm is then constructed by adding an adjustable parameter. The quantum switching module is also applied to the estimation part to select an appropriate algorithm in different fault cases. The estimation results from the given fuzzy observer are used to design a type‐2 fuzzy fault accommodation controller to stabilize the fuzzy system. The stability of the proposed scheme is analyzed using the Lyapunov stability theory. Finally, the validity and availability of the method are verified by a series of comparisons on numerical simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号