首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对参数不确定的轮式移动机器人的轨迹跟踪问题,设计自适应跟踪控制器.基于移动机器人的动力学模型,采用backstepping积分方法,通过逐步递推选择适当的Lyapunov函数,设计基于状态反馈的自适应控制器,并进行了相应的稳定性分析.与传统PID控制进行仿真对比,结果表明提出的自适应控制策略能较好地补偿系统参数摄动的影响,提高了移动机器人的轨迹跟踪性能和鲁棒性.  相似文献   

2.
This paper investigates the active fault tolerant cooperative control problem for a team of wheeled mobile robots whose actuators are subjected to partial or severe faults during the team mission. The cooperative robots network only requires the interaction between local neighbors over the undirected graph and does not assume the existence of leaders in the network. We assume that the communication exists all the time during the mission. To avoid the system''s deterioration in the event of a fault, a set of extended Kalman filters (EKFs) are employed to monitor the actuators'' behavior for each robot. Then, based on the online information given by the EKFs, a reconfigurable sliding mode control is proposed to take an appropriate action to accommodate that fault. In this research study, two types of faults are considered. The first type is a partial actuator fault in which the faulty actuator responds to a partial of its control input, but still has the capability to continue the mission when the control law is reconfigured. In addition, the controllers of the remaining healthy robots are reconfigured simultaneously to move within the same capability of the faulty one. The second type is a severe actuator fault in which the faulty actuator is subjected to a large loss of its control input, and that lead the exclusion of that faulty robot from the team formation. Consequently, the remaining healthy robots update their reference trajectories and form a new formation shape to achieve the rest of the team mission.  相似文献   

3.
This paper addresses the problem of designing robust tracking control for a class of uncertain wheeled mobile robots actuated by brushed direct current motors. This class of electrically‐driven mechanical systems consists of the robot kinematics, the robot dynamics, and the wheel actuator dynamics. Via the backstepping technique, an intelligent robust tracking control scheme that integrates a kinematic controller and an adaptive neural network‐based (or fuzzy‐based) controller is developed such that all of the states and signals of the closed‐loop system are bounded and the tracking error can be made as small as possible. Two adaptive approximation systems are constructed to learn the behaviors of unknown mechanical and electrical dynamics. The effects of both the approximation errors and the unmodeled time‐varying perturbations in the input and virtual‐input weighting matrices are counteracted by suitably tuning the control gains. Consequently, the robust control scheme developed here can be employed to handle a broader class of electrically‐driven wheeled mobile robots in the presence of high‐degree time‐varying uncertainties. Finally, a simulation example is given to demonstrate the effectiveness of the developed control scheme.  相似文献   

4.
In this paper, an adaptive fault‐tolerant time‐varying formation control problem for nonlinear multiagent systems with multiple leaders is studied against actuator faults and state‐dependent uncertainties. Simultaneously, the followers form a predefined formation while tracking reference signal determined by the convex combination of the multiple leaders. Based on the neighboring relative information, an adaptive fault‐tolerant formation time‐varying control protocol is constructed to compensate for the influences of actuator faults and model uncertainties. In addition, the updating laws can be adjusted online through the adaptive mechanism, and the proposed control protocol can guarantee that all the signals in the closed‐loop systems are bounded. Lyapunov‐like functions are addressed to prove the stability of multiagent systems. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

5.
在轮式移动机器人协同编队问题中,如何保证移动机器人在追踪自身期望轨迹的同时,又能实现与其他机器人运动同步的问题对控制算法的设计提出了更高的要求.本文提出一种基于图论的鲁棒自适应同步终端滑模控制算法来解决这一问题.首先介绍了轮式移动机器人非线性运动学瞬态模型,该模型避免了一般运动学模型多输入耦合互相干扰的问题.然后根据交叉耦合误差设计同步控制算法实现运动同步,通过鲁棒控制对系统外部干扰进行抑制,自适应律保证切换增益实时调节.运用Lyapunov方法进行了稳定性分析,证明了系统追踪误差的收敛性.最后通过MATLAB仿真验证了所设计算法的有效性.  相似文献   

6.
针对含有驱动器及编队动力学的多非完整移动机器人编队控制问题,基于领航者-跟随者[l-ψ]控制结构,通过反步法设计了一种将运动学控制器与驱动器输入电压控制器相结合的新型控制策略。采用径向基神经网络(RBFNN)对跟随者及领航者动力学非线性不确定部分进行在线估计,并通过自适应鲁棒控制器对神经网络建模误差进行补偿。该方法不但解决了移动机器人编队控制的参数与非参数不确定性问题,同时也确保了机器人编队在期望队形下对指定轨迹的跟踪;基于Lyapunov方法的设计过程,保证了控制系统的稳定与收敛;仿真结果表明了该方法的有效性。  相似文献   

7.
This paper studies the fully distributed formation control problem of multi-robot systems without global position measurements subject to unknown longitudinal slippage constraints.It is difficult for robots to obtain accurate and stable global position information in many cases,such as when indoors,tunnels and any other environments where GPS(global positioning system)is denied,thus it is meaningful to overcome the dependence on global position information.Additionally,unknown slippage,which is hard to avoid for wheeled robots due to the existence of ice,sand,or muddy roads,can not only affect the control performance of wheeled robot,but also limits the application scene of wheeled mobile robots.To solve both problems,a fully distributed finite time state observer which does not require any global position information is proposed,such that each follower robot can estimate the leader’s states within finite time.The distributed adaptive controllers are further designed for each follower robot such that the desired formation can be achieved while overcoming the effect of unknown slippage.Finally,the effectiveness of the proposed observer and control laws are verified by simulation results.  相似文献   

8.
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs) is subject to nonholonomic constraints, system uncertainties, and external disturbances. This paper proposes a barrier function-based adaptive sliding mode control(BFASMC) method to provide high-precision, fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a pre...  相似文献   

9.
多自由度遥操作机器人可靠性控制研究   总被引:1,自引:0,他引:1  
本文针对多自由度遥操作机器人的可靠性控制问题进行了研究,采用时延估计在线获得机器人系统的未知动力学和外界干扰,并在控制过程中加以补偿.这里,我们利用一些满足一定概率分布的不相关的随机变量来表示遥操作机器人的概率性执行器故障.通过考虑遥操作机器人的概率性执行器故障和控制时变时延,我们建立了新的遥操作机器人模型.在此基础上,研究了遥操作机器人的可靠性控制.通过使用Lyapunov稳定性方法和随机系统理论,得到了遥操作机器人的执行器概率分布依赖的渐近均方稳定的充分性条件,其中该条件是以线性矩阵不等式的形式给出,从而非常便于计算机转化为凸优化问题进行求解.最后用一个仿真算例来验证本文给出方法具有以下作用:首先,在考虑遥操作机器人的概率性执行器的故障的情况下,本文提出方法可以很容易地得到控制输入时延的上界;其次,在不考虑遥操作机器人执行器故障时,本文提出方法依然可以使用;最后,在考虑遥操作机器人的概率性执行器故障时,本文提出的方法都可以为其设计理想的控制器.  相似文献   

10.
In this paper, indirect adaptive state feedback control schemes are developed to solve the robust faulttolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems. A more general and practical model of actuator faults is presented. While both eventual faults on actuators and perturbations are unknown, the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online, as well as to estimate control effectiveness on actuators. Thus, on the basis of the information from adaptive schemes, an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically. According to Lyapunov stability theory, it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations. An example is provided to further illustrate the fault compensation effectiveness.  相似文献   

11.
In this paper, indirect adaptive state feedback control schemes are developed to solve the robust faulttolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems. A more general and practical model of actuator faults is presented. While both eventual faults on actuators and perturbations are unknown, the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online, as well as to estimate control effectiveness on actuators. Thus, on the basis of the information from adaptive schemes, an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically. According to Lyapunov stability theory, it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations. An example is provided to further illustrate the fault compensation effectiveness.  相似文献   

12.
With a focus on aero‐engine distributed control systems (DCSs) with Markov time delay, unknown input disturbance, and sensor and actuator simultaneous faults, a combined fault tolerant algorithm based on the adaptive sliding mode observer is studied. First, an uncertain augmented model of distributed control system is established under the condition of simultaneous sensor and actuator faults, which also considers the influence of the output disturbances. Second, an augmented adaptive sliding mode observer is designed and the linear matrix inequality (LMI) form stability condition of the combined closed‐loop system is deduced. Third, a robust sliding mode fault tolerant controller is designed based on fault estimation of the sliding mode observer, where the theory of predictive control is adopted to suppress the influence of random time delay on system stability. Simulation results indicate that the proposed sliding mode fault tolerant controller can be very effective despite the existence of faults and output disturbances, and is suitable for the simultaneous sensor and actuator faults condition.  相似文献   

13.
The problem of linear systems subject to actuator faults(outage,loss of efectiveness and stuck),parameter uncertainties and external disturbances is considered.An active fault compensation control law is designed which utilizes compensation in such a way that uncertainties,disturbances and the occurrence of actuator faults are account for.The main idea is designing a robust adaptive output feedback controller by automatically compensating the fault dynamics to render the close-loop stability.According to the information from the adaptive mechanism,the updating control law is derived such that all the parameters of the unknown input signal are bounded.Furthermore,a disturbance decoupled fault reconstruction scheme is presented to evaluate the severity of the fault and to indicate how fault accommodation should be implemented.The advantage of fault compensation is that the dynamics caused by faults can be accommodated online.The proposed design method is illustrated on a rocket fairing structural-acoustic model.  相似文献   

14.
An adaptive sliding mode observer (SMO)–based fault‐tolerant control method taking into consideration of actuator saturation is proposed for a hypersonic scramjet vehicle (HSV) under a class of time‐varying actuator faults. The SMO is designed to robustly estimate the HSV states and reconstruct the fault signals. The adaptive technique is integrated into the SMO to approximate the unknown bounds of system uncertainties, actuator faults, and estimation errors. The robust SMO synthesis condition, which can be formulated as a set of linear matrix inequalities, is improved by relaxing structure constraints to the Lyapunov matrix. An anti‐windup feedback control law, which utilizes the estimated HSV states and the fault signals, is designed to counteract the negative effects of actuator saturation induced by actuator faults. Simulation results demonstrate that the proposed approach can guarantee stability and maintain performance of the closed‐loop system in the presence of HSV actuator faults and saturation.  相似文献   

15.
In this paper, an actuator robust fault‐tolerant control is proposed for ocean surface vessels with parametric uncertainties and unknown disturbances. Using the backstepping technique and Lyapunov synthesis method, the adaptive tracking control is first developed by incorporating the actuator configuration matrix and considering actuator saturation constraints. The changeable actuator configuration matrix caused by rotatable propulsion devices is considered. Next, the actuator fault‐tolerant control is developed for the case when faults occur in propulsion devices of the ocean surface vessel. Rigorous stability analysis is carried out to show that the proposed fault‐tolerant control can guarantee the stability of the closed‐loop system under certain actuator failure. Finally, simulation studies are given to illustrate the effectiveness of the proposed adaptive tracking control and fault‐tolerant control. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The problem of process systems subject to actuator faults (partial loss of actuator effectiveness) is considered. An active fault compensation control law is designed that utilizes compensation in a way that accounts for matching and unmatching uncertainties and the occurrence of actuator faults. The main idea is designing the robust compensation controller to guarantee closed-loop stability in the presence of faults, based on a neural network representation of the fault dynamics. Changes in the system due to faults are modeled as unknown nonlinear functions. The updating control law is derived such that all the parameters of the closed-loop system are bounded. An output feedback controller is used to the “healthy” system and the adaptive feedback controller is used to compensate for the effect of the dynamics caused by the fault. The advantage of fault compensation is the dynamics caused by faults can be accommodated online. The proposed design method is illustrated on a three-tank system.  相似文献   

17.
针对存在外部干扰、转动惯量矩阵不确定以及执行器故障的航天器姿态跟踪控制问题,本文提出了基于自适应快速非奇异终端滑模的有限时间收敛故障容错控制方案.通过引入能够避免奇异点,且具有有限时间收敛特性的快速非奇异终端滑模面,设计了满足多约束条件有限时间收敛的姿态跟踪容错控制律,利用参数自适应方法使控制器不依赖转动惯量和外部干扰的上界信息.Lyapunov稳定性分析表明:在存在外部干扰、转动惯量矩阵不确定以及执行器故障等约束条件下,本文设计的控制律能够保证闭环系统的快速收敛性,而且对执行器故障具有良好的容错性能.数值仿真校验了该控制律在姿态跟踪控制中的优良性能.  相似文献   

18.
This paper presents a novel control method for accommodating actuator faults in a class of multiple-input multiple-output (MIMO) nonlinear uncertain systems.The designed control scheme can tolerate both the time-varying lock-in-place and loss of effectiveness actuator faults.In each subsystem of the considered MIMO system,the controller is obtained from a backstepping procedure;an adaptive fuzzy approximator with minimal learning parameterization is employed to approximate the package of unknown nonlinear functions in each design step.Additional control effort is taken to deal with the approximation error and external disturbance together.It is proven that the closed-loop stability and desired tracking performance can be guaranteed by the proposed control scheme.An example is used to show the effectiveness of the designed controller.  相似文献   

19.
This paper deals with the problem of fault‐tolerant control (FTC) for a class of nonlinear uncertain systems against actuator faults using adaptive logic‐based switching control method. The uncertainties under consideration are assumed to be dominated by a bounding system which is linear in growth in the unmeasurable states but can be a continuous function of the system output, with unknown growth rates. Several types of common actuator faults, e.g., bias, loss‐of‐effectiveness, stuck and hard‐over faults are integrated by a unified fault model. By utilizing a novel adaptive logic‐based switching control scheme, the actuator faults can be detected and automatically accommodated by switching from the stuck actuator to the healthy or even partly losing‐effectiveness one with bias, in the presence of large parametric uncertainty. In particular, two switching logics for updating the gain in the output feedback controllers are designed to ensure the global stability of the nominal (fault‐free) system and the boundedness of all closed‐loop signals of the faulty system, respectively. Two simulation examples of an aircraft wing model and a single‐link flexible‐joint robot are given to show the effectiveness of the proposed FTC controller. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
马亚杰  姜斌  任好 《自动化学报》2023,49(3):678-686
针对航天器近距离操作过程中追踪航天器位姿控制系统执行器故障问题, 提出了一种直接自适应容错控制方法, 保证了追踪航天器在发生执行器故障下的自身稳定性和对目标航天器位姿状态的渐近跟踪性能. 基于对偶四元数的航天器位姿一体化控制系统模型, 首先, 假设故障已知, 设计标称控制信号; 然后, 设计自适应更新律对标称控制信号中的未知参数进行估计, 构成自适应控制信号; 最后, 利用多Lyapunov函数对多故障模式下的系统性能进行分析. 仿真结果表明了所提方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号