首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed.  相似文献   

2.
In this work, we studied the influence of surface functionality of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of basalt fiber-reinforced composites. Acid and base values of the MWCNTs were determined by Boehm's titration technique. The surface properties of the MWCNTs were determined FT-IR, and XPS. The mechanical properties of the composites were assessed by measuring the interlaminar shear stress, fracture toughness, fracture energy, and impact strength. The chemical treatments led to a change of the surface characteristics of the MWCNTs and of the mechanical interfacial properties of MWCNTs/basalt fibers/epoxy composites. Especially the acid-treated MWCNTs/basalt fibers/epoxy composites had improved mechanical properties compared to the base-treated and non-treated MWCNTs/basalt fibers/epoxy composites. These results can probably be attributed to the improved interfacial bonding strength resulting from the improved dispersion and interfacial adhesion between the epoxy resin and the MWCNTs.  相似文献   

3.
A modified method for interconnecting multi-walled carbon nanotubes (MWCNTs) was put forward. And interconnected MWCNTs by reaction of acyl chloride and amino groups were obtained. Scanning electron microscopy shows that hetero-junctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs and interconnected MWCNTs reinforced epoxy resin composites were fabricated by cast moulding. Tensile properties and fracture surfaces of the specimens were investigated. The results show that, compared with pristine MWCNTs and chemically functionalized MWCNTs, the chemically interconnected MWCNTs improved the fracture strain and therefore the toughness of the composites significantly.  相似文献   

4.
Multiwalled carbon nanotubes (MWCNTs) reinforced epoxy based composites were fabricated by using an innovative ultrasonic dual mixing (UDM) process consists of ultrasonic mixing with simultaneous magnetic stirring. The effect of addition of varying amount of MWCNTs on thermal stability and tensile properties of the epoxy based composite has been investigated. It is found that the thermal stability, tensile strength and toughness of the epoxy base improves with the increase of MWCNTs addition up to 1.5 wt.% and UDM processing at certain capacity of the system. Tensile tests and thermal gravimetric analysis (TGA) were performed on each group of composites containing different amount of MWCNTs to determine their mechanical and thermal properties respectively. The dispersion of 1.5 wt.% MWCNTs fillers in epoxy nanocomposites was studied by transmission electron microscopy (TEM) as well as by field emission scanning electron microscopy (FESEM) applied on their tensile fracture surface.  相似文献   

5.
Hierarchical +1 composites consisting of carbon fibers with carbon nanotubes (CNTs) grown onto them and an epoxy matrix were processed, and the mode I fracture toughness of these composites was evaluated. The mode I fracture toughness of the initial batches of the hierarchical composites was lower than that of the baseline samples without CNTs. Hence, efforts to enhance the adhesion between carbon fibers and CNTs were made, resulting in enhanced adhesion. The enhanced adhesion was confirmed by Scotch tape tests and mode I fracture toughness tests followed by fractographic studies. The mode I fracture toughness of the hierarchical composites with enhanced adhesion was 51% and 89% higher than those of the baseline samples and hierarchical composites with poor adhesion, respectively. Moreover, fractographic studies of the fracture surfaces of the hierarchical composites with enhanced adhesion showed that CNTs were still attached to carbon fibers even after the mechanical tests.  相似文献   

6.
Nickel-Pitch-based carbon fibres (Ni-PFs) were prepared by electroless nickel-plating to enhance fracture toughness of Ni-PFs reinforced epoxy matrix composites (Ni-PFs/epoxy). The surface properties of Ni-PFs were determined by scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), and X-ray diffraction (XRD). The fracture toughness of the Ni-PFs/epoxy was assessed by critical stress intensity factor (KIC) and critical strain energy release rate (GIC). The fracture toughness of Ni-PFs/epoxy was enhanced compared to those of PFs/epoxy. These results were attributed to the increase of the degree of adhesion at interfaces between Ni-PFs and matrix resins in the composites.  相似文献   

7.
Interlaminar shear properties of fibre reinforced polymer composites are important in many structural applications. Matrix modification is an effective way to improve the composite interlaminar shear properties. In this paper, diglycidyl ether of bisphenol-F/diethyl toluene diamine system is used as the starting epoxy matrix. Multi-walled carbon nanotubes (MWCNTs) and reactive aliphatic diluent named n-butyl glycidyl ether (BGE) are employed to modify the epoxy matrix. Unmodified and modified epoxy resins are used for fabricating glass fibre reinforced composites by a hot-press process. The interlaminar shear strength (ILSS) of the glass fibre reinforced composites is investigated and the results indicate that introduction of MWCNT and BGE obviously enhances the ILSS. In particular, the simultaneous addition of 0.5 wt.% MWCNTs and 10 phr BGE leads to the 25.4% increase in the ILSS for the glass fibre reinforced composite. The fracture surfaces of the fibre reinforced composites are examined by scanning electron microscopy and the micrographs are employed to explain the ILSS results.  相似文献   

8.
Temperature dependence of the fracture toughness of epoxy composites reinforced with nano- and micro-silica particles was evaluated. Epoxy composites containing varied composition ratios ΦSP of spherical nano- and micro-silica particles, 240 nm and 1.56 μm, were prepared at a fixed volume fraction (VP = 0.30). The thermo-viscoelasticity and fracture toughness of the composites and neat epoxy were measured at 143 K, 185 K, 228 K, 296 K, 363 K, and 399 K. Experimental results revealed that fracture toughness strongly depended on the microstructure of nano- and micro-particles bidispersion as well as its interactions with the matrix at all temperature, but depended on toughened matrix due to increase in mobility of matrix at the relaxation temperatures.  相似文献   

9.
In this work, the effects of as-produced GO and silane functionalized GO (silane-f-GO) loading and silane functionalization on the mechanical properties of epoxy composites are investigated and compared. Such silane functionalization containing epoxy ended-groups is found to effectively improve the compatibility between the silane-f-GO and the epoxy matrix. Increased storage modulus, glass transition temperature, thermal stability, tensile and flexural properties and fracture toughness of epoxy composites filled with the silane-f-GO sheets are observed compared with those of the neat epoxy and GO/epoxy composites. These findings confirm the improved dispersion and interfacial interaction in the composites arising from covalent bonds between the silane-f-GO and the epoxy matrix. Moreover, several possible fracture mechanisms, i.e. crack pinning/deflection, crack bridging, and matrix plastic deformation initiated by the debonding/delamination of GO sheets, were identified and evaluated.  相似文献   

10.
多壁碳纳米管-有机蒙脱土协同增韧环氧树脂   总被引:3,自引:1,他引:2       下载免费PDF全文
采用机械搅拌和离心分散的方法制备了多壁碳纳米管-有机蒙脱土/环氧树脂复合材料。X射线衍射分析表明,当有机蒙脱土含量为2 wt%时, 蒙脱土在树脂体系中能够形成离散性结构。断裂韧性测试结果表明,多壁碳纳米管和有机蒙脱土的混杂对环氧树脂具有协同增韧的作用。当有机蒙脱土含量为2 wt%,多壁碳纳米管含量为0.1 wt%时,所得复合材料的断裂韧性是纯环氧树脂的1.77倍,是2 wt%有机蒙脱土/环氧树脂复合材料的1.45倍,是0.1 wt%多壁碳纳米管/环氧树脂复合材料的1.39倍。扫描电镜分析表明,多壁碳纳米管在环氧树脂体系中分散均匀,并与有机蒙脱土片层形成了一定程度的相互穿插和咬合,多壁碳纳米管与有机蒙脱土协同增韧的主要原因是微裂纹增韧、剪切屈服与纤维拔出。   相似文献   

11.
Carboxyl terminated butadiene acrylonitrile (CTBN) was added to epoxy resins to improve the fracture toughness, and then two different lateral dimensions of graphene nanoplatelets (GnPs), nominally <1 μm (GnP-C750) and 5 μm (GnP-5) in diameter, were individually incorporated into the CTBN/epoxy to fabricate multi-phase composites. The study showed that GnP-5 is more favorable for enhancing the properties of CTBN/epoxy. GnPs/CTBN/epoxy ternary composites with significant toughness and thermal conductivity enhancements combined with comparable stiffness to that of the neat resin were successfully achieved by incorporating 3 wt.% GnP-5 into 10 wt.% CTBN modified epoxy resins. According to the SEM investigations, GnP-5 debonding from the matrix is suppressed due to the presence of CTBN. Nevertheless, apart from rubber cavitation and matrix shear banding, additional active toughening mechanisms induced by GnP-5, such as crack deflection, layer breakage and separation/delamination of GnP-5 layers contributed to the enhanced fracture toughness of the hybrid composites.  相似文献   

12.
The ability of highly conductive hybrid carbon–fiber/carbon nanotube loaded epoxy composites to sense matrix cracking damage in situ is demonstrated. Multi-walled carbon-nanotubes (MWCNTs) are grown perpendicular to and on the surface of a woven carbon–fiber fabric using a chemical vapor deposition process. An increase in sensitivity of resistance change under interlaminar fracture is shown through a series of double cantilever beam (DCB) tests on samples prepared with MWCNTs grown on both sides of carbon–fiber fabric lamina placed at the top and bottom surfaces of an 8-layer test panel whereas samples with MWCNTs inside the samples did not show much increase in sensitivity of resistance change compared with the baseline samples without MWCNTs. The results suggest that the addition of surface positioned hierarchical carbon-nanotube lamina on composite structures has the potential for autonomic sensing of internal matrix damage.  相似文献   

13.
Cryogenic mechanical properties are important parameters for epoxy resins used in cryogenic engineering areas. In this study, multi-walled carbon nanotubes (MWCNTs) were employed to reinforce diglycidyl ether of bisphenol F (DGBEF)/diethyl toluene diamine (DETD) epoxy system modified by poly(ethersulfone) (PES) for enhancing the cryogenic mechanical properties. The epoxy system was properly modified by PES in our previous work and the optimized formulation of the epoxy system was reinforced by MWCNTs in the present work. The results show that the tensile strength and Young’s modulus at 77 K were enhanced by 57.9% and 10.1%, respectively. The reported decrease in the previous work of the Young’s modulus of the modified epoxy system due to the introduction of flexible PES is offset by the increase of the modulus due to the introduction of MWCNTs. Meanwhile, the fracture toughness (KIC) at 77 K was improved by about 13.5% compared to that of the PES modified epoxy matrix when the 0.5 wt.% MWCNT content was introduced. These interesting results imply that the simultaneous usage of PES and MWCNTs in a brittle epoxy resin is a promising approach for efficiently modifying and reinforcing epoxy resins for cryogenic engineering applications.  相似文献   

14.
Epoxy composites filled with different amounts of aggregate-free silica nanoparticles and phase-separated submicron rubber particles were fabricated to study the synergistic effect of multi-phase particles on mechanical properties of the composites. Compared with binary composites with single-phase particles, the ternary composites with both rigid and soft particles offer a good balance in stiffness, strength and fracture toughness, showing capacities in tailoring the mechanical properties of modified epoxy resins. It was observed that debonding of silica nanoparticles from matrix in the ternary composites was less pronounced than that in the binary composites. Moreover, the rubber particles became smaller and their shape tends to be irregular, affected by the presence of rigid silica nanoparticles. The toughening mechanisms in the epoxy composites were evaluated, and the enlarged plastic deformation around the crack tip, induced by the combination of rigid and soft particles, seems to be a dominant factor in enhancing fracture toughness of the ternary composites.  相似文献   

15.
采用抽滤法制备了多壁碳纳米管(MWCNTs)纸(又称巴基纸), 研究了巴基纸增强不同环氧基体复合材料(巴基纸复合材料)的拉伸性能及其断口形貌, 分析了MWCNT含量、 树脂基体拉伸性能以及巴基纸与树脂的界面黏附作用对复合材料拉伸性能的影响。结果表明: 在MWCNT质量分数小于39.1%范围内, 增加碳纳米管含量, 可显著提高巴基纸/环氧复合材料的拉伸性能; 巴基纸/环氧复合材料的拉伸强度和模量与树脂基体的性能密切相关, 其拉伸破坏形式受基体的脆韧性影响显著; 相比较而言, 巴基纸与树脂间的黏附功对巴基纸/环氧复合材料拉伸性能的影响不明显。  相似文献   

16.
The reinforcement effects of two nanofillers, i.e., multi-walled carbon nanotube (MWCNT) and vapor grown carbon fiber (VGCF), which are used at the interface of conventional CFRP laminates, and in epoxy bulk composites, have been investigated. When using the two nanofillers at the interface between two conventional CFRP sublaminates, the Mode-I interlaminar tensile strength and fracture toughness of CFRP laminates are improved significantly. The performance of VGCF is better than that of MWCNT in this case. For epoxy bulk composites, the two nanofillers play a similar role of good reinforcement in Young’s modulus and tensile strength. However, the Mode-I fracture toughness of epoxy/MWCNT is much better than that of epoxy/VGCF.  相似文献   

17.
Epoxy matrix toughened by polyethersulfone (PES) and polyamide (PA) microparticles was designed and the in-situ interlaminar toughened carbon fiber/epoxy composites were fabricated. Synergistic toughening effect of PES and PA on epoxy matrix was achieved due to semi-IPN structure of PES toughened matrix and uniform dispersion of PA microparticles. Shear-calender orientation of PA microparticles was found during prepreg processing and the microparticles remained on the surface of prepreg due to fiber-bundle filtration. The in-situ formed toughening interlayer of PA microparticles and interfacial bonding between PA and epoxy matrix were detected, which resulted in enhanced fracture toughness, CAI, and transverse flexural strength of the composite based on the PES/PA synergistically toughened matrix. SEM images of fracture morphology of the composite showed evidence of enhanced plastic deformation created by PES and PA, and crack deflection and bridging by PA microparticles.  相似文献   

18.
In this paper, stacked-cup carbon nanofibers (CNF) were dispersed in the matrix phase of carbon-fiber-reinforced composites based on a high-performance epoxy system with and without modification by an elastomeric triblock copolymer (TCP) for increased toughness. The addition of the TCP provided an enhancement in toughness at the cost of a slight degradation in modulus and strength. The CNFs, on the other hand, provided significantly enhanced strength and stiffness in matrix-dominated configurations, including tension of quasi-isotropic composites and short beam shear strength of both quasi-isotropic and unidirectional composites. Scanning electron microscopy revealed enhanced adhesion between the matrix and carbon fibers with the addition of either TCP or CNFs. However, CNF agglomeration in the studied systems partially offset the energy dissipation processes brought about by the nanofibers, thereby limiting interlaminar fracture toughness enhancements by CNF addition. These results show good promise for CNFs as low-cost reinforcement for composites while offering insight into the codependent morphologies of multi-scale phases and their influence over bulk properties.  相似文献   

19.
MWNTs-EP/PSF (polysulfone) hybrid nanofibers with preferred orientation were directly electrospun onto carbon fiber/epoxy prepregs and interlaminar synchronously reinforced and toughened CFRP composites were successfully fabricated. With MWNTs-EP loading increasing, the oriented nanofibers were obtained accompanying with enhanced alignment of inner MWNTs-EP. Flexural properties and interlaminar shear strength of composites were improved with increasing MWNTs-EP loadings, whereas fracture toughness attained maximum at 10 wt% MWNTs-EP loading and then decreased. Based on these results, multiscale schematic modeling and mechanism schematic of hybrid nanofibers reinforced and toughened composites were suggested. Due to the preferred orientation of nanofibers, MWNTs-EP was inclined to align vertically to carbon fiber direction along the in-plane of interface layer. The proposed network structures, containing four correlative phases of MWNTs-EP/PSF sphere/carbon fiber/epoxy matrix, contributed to simultaneous improvement of strength and toughness of composites, which was realized by crack pinning, crack deflection, crack bridging and effective load transfer.  相似文献   

20.
Carbon nanotubes (CNT) in their various forms have great potential for use in the development of multifunctional multiscale laminated composites due to their unique geometry and properties. Recent advancements in the development of CNT hierarchical composites have mostly focused on multi-walled carbon nanotubes (MWCNT). In this work, single-walled carbon nanotubes (SWCNT) were used to develop nano-modified carbon fiber/epoxy laminates. A functionalization technique based on reduced SWCNT was employed to improve dispersion and epoxy resin-nanotube interaction. A commercial prepregging unit was then used to impregnate unidirectional carbon fiber tape with a modified epoxy system containing 0.1 wt% functionalized SWCNT. Impact and compression-after-impact (CAI) tests, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness tests were performed on laminates with and without SWCNT. It was found that incorporation of 0.1 wt% of SWCNT resulted in a 5% reduction of the area of impact damage, a 3.5% increase in CAI strength, a 13% increase in Mode I fracture toughness, and 28% increase in Mode II interlaminar fracture toughness. A comparison between the results of this work and literature results on MWCNT-modified laminated composites suggests that SWCNT, at similar loadings, are more effective in enhancing the mechanical performance of traditional laminated composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号