首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张海博  党婧 《粘接》2014,(4):58-63
聚合物纳米胶束不仅可以提高药物的溶解度、生物利用度,延长药物在人体内的循环时间,还可以有效控制药物的释放而实现靶向治疗效果,极大地减少药物对人体的副作用。通过嵌段共聚物的纳米工程,可制备出具有细胞或组织靶向性且对物理或化学刺激敏感的高分子药物载体。本文综述了对pH值、温度、超声波和光具有响应性的聚合物纳米胶束的制备及其在药物控制释放领域的应用。  相似文献   

2.
Small‐molecule drugs often have limited solubility, display rapid clearance or poor selectivity that leads to undesired side‐effects. Although prodrug strategies can improve solubility and lower toxicity, activation ‘on demand’ as well as targeted transport of prodrugs remains a challenge in drug delivery. Responsive polymeric nanoparticles can help meet these challenges with the encapsulation or conjugation of drugs, allowing release at the target site upon triggering by an internal or external stimulus. The adaptable design of polymeric nanoparticles allows them to play a vital role in achieving a specific and desired response following application of a specific stimulus. Here, the most recent progress in responsive polymeric nanoparticles is reviewed with a focus on the chemical properties of the utilized polymers. © 2017 Society of Chemical Industry  相似文献   

3.
Active and passive mixers, including a considerable variety of micro-devices, are nowadays widely used for the production of nanoparticles. Polymer nanoparticles for controlled drug delivery applications are investigated in this work with two specific objectives. The first one is to experimentally quantify the efficiency of confined impinging jets reactors and Tee-mixers in the production of nanoparticles constituted by two polymers: poly-?-caprolactone and poly(methoxypolyethyleneglycolcyanoacrylate-co-hexadecylcyanoacrylate). The second objective is the development of a simple and reliable mathematical model to be used for the design, optimization and scale up of mixers for polymer nanoparticle production. Although the behaviour of the polymers investigated is quite different, it is possible to conclude that confined impinging jets reactors are more efficient than Tee-mixers, in converting the pressure drop into turbulent kinetic energy and as a consequence in producing smaller particles. The very simple modelling approach proposed here (based on the evaluation of the mixing time) seems to be able to correlate well experimental data obtained under different operating conditions, independently on the type of device used. Moreover, in the case of poly-?-caprolactone it was also possible to successfully quantify the particle formation time with a simple power law, further exploiting the model.  相似文献   

4.
We report on the fabrication of polyelectrolyte multilayer-coated hollow silicon dioxide micropillars as pH-responsive drug delivery systems. Silicon dioxide micropillars are based on macroporous silicon formed by electrochemical etching. Due to their hollow core capable of being loaded with chemically active agents, silicon dioxide micropillars provide additional function such as drug delivery system. The polyelectrolyte multilayer was assembled by the layer-by-layer technique based on the alternative deposition of cationic and anionic polyelectrolytes. The polyelectrolyte pair poly(allylamine hydrochloride) and sodium poly(styrene sulfonate) exhibited pH-responsive properties for the loading and release of a positively charged drug doxorubicin. The drug release rate was observed to be higher at pH 5.2 compared to that at pH 7.4. Furthermore, we assessed the effect of the number of polyelectrolyte bilayers on the drug release loading and release rate. Thus, this hybrid composite could be potentially applicable as a pH-controlled system for localized drug release.  相似文献   

5.
Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

PACS

87.85.J81.05.Rm; 61.46. + w  相似文献   

6.
In the present work, we reported a facile synthesis of cobalt ferrite (CoFe2O4) nanoparticles in the presence of L-cysteine (Lys). The morphology and size of samples were characterized by SEM and TEM. The successful coating of Lys on the surface of CoFe2O4 was confirmed by XRD, XPS and TGA. The investigation of magnetic properties showed that both bare CoFe2O4 and Lys-coated CoFe2O4 nanoparticles exhibited room-temperature superparamagnetic behavior. The results of MTT experiments revealed insignificant cytotoxicity of Lys-coated CoFe2O4 nanoparticles even after 24?h incubation. More importantly, Lys-coated CoFe2O4 nanoparticles displayed an excellent drug loading capacity and a pH-sensitive drug release behavior. In summary, the prepared Lys-coated CoFe2O4 nanoparticles demonstrated a promising application potential in controlled drug delivery.  相似文献   

7.
This review defines chemotherapeutic engineering as an engineering discipline that applies and further develops chemical engineering principles, techniques and devices for chemotherapy of cancer and other diseases. It provides new challenges as well as new opportunities for chemical engineering. Chemical engineering has substantially changed the human civilization through its services and products to improve the quality of life for human being. It is now time for chemical engineering to contribute to the most important aspect of the quality of life—human health care. Cancer and cardiovascular diseases are the leading causes for deaths. Chemotherapy is one of the most important treatments currently available for cancer and other diseases such as cardiovascular diseases. The present status of chemotherapy is far from being satisfactory. Its efficacy is limited and patients have to suffer from serious side effects, some of which are life-threatening. Chemotherapeutic engineering is emerging to help solving the problems in chemotherapy and to eventually develop an ideal way to conduct chemotherapy with the best efficacy and the least side effects. This review gives, from an engineering point of view, brief introductions to cancer and cancer treatment, chemotherapy and the problems involved in chemotherapy, and the possible roles of chemical engineering in solving the problems involved. Progress in developing various controlled and targeted drug delivery systems is reviewed with an emphasis on nanoparticles of biodegradable polymers and lipid bilayer vesicles (liposomes). Preparation, characterization, in vitro release, cell line experiments and animal testing of drug-loaded polymeric nanoparticles are described with paclitaxel as a prototype drug, which is one of the best anticancer drugs found in nature. A novel drug delivery system, liposomes-in-microspheres, is used as an example for possible combinations of the existing polymer- and lipid-based delivery systems. Research of molecular interactions between the drug and the cell membrane is also reviewed, with the lipid monolayer at the air-water or oil-water interface and bilayer vesicles as models for the cell membrane. Finally, mathematical modeling in chemotherapeutic engineering is discussed with typical examples in the literature. This review is a short introduction of chemotherapeutic engineering to chemical engineers, biomedical engineers, other engineers, clinical oncologists, and pharmaceutical scientists, who are interested in developing new dosage forms of drugs for chemotherapy of cancer and other diseases with the best efficacy and the least side effects.  相似文献   

8.
In this study, we synthesized poly (vinyl acetate-co-divinyl benzene) microspheres with various monomer/cross-linker contents for oral/topical sustained drug release applications and determined the micromechanical properties by nanoindentation. Compression elastic moduli of materials were calculated by using the limited depth of indentation according to Hertz elastic deformation model and presented as the histogram of multiple data. In terms of drug release practices, poly (VAc-co-DVB) microspheres with a high DVB content, especially in topical applications, are expected to carry drugs under mechanical stresses of less than 1.0 GPa.  相似文献   

9.
The synthesis of a novel complex system designed for colon-targeting drug delivery was reported. The complex was prepared by dialdehyde konjac glucomannan and adipic dihydrazides to form steady Schiff base, and crosslinking with 5-aminosalicylic acid (5-ASA) through glutaraldehyde as a cross-linking agent. The structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 13C NMR, wide angle X-ray diffraction (WAXRD) and thermogravimetric analysis. In vitro release of 5-ASA from the complex showed that the total released 5-ASA after 24 h in buffer solution at pH 1.2, 6.8, and 7.4 were 4, 59, and 21%, respectively. The release rate of 5-ASA can be controlled by tuning the pH value more effectively. The results indicated that the novel pH-sensitive complex could be potentially useful for colon-targeting drug delivery system.  相似文献   

10.
Mitomycin C is one of the most effective chemotherapeutic agents for a wide spectrum of cancers, but its clinical use is still hindered by the mitomycin C (MMC) delivery systems. In this study, the MMC-loaded polymer-lipid hybrid nanoparticles (NPs) were prepared by a single-step assembly (ACS Nano 2012, 6:4955 to 4965) of MMC-soybean phosphatidyhlcholine (SPC) complex (Mol. Pharmaceutics 2013, 10:90 to 101) and biodegradable polylactic acid (PLA) polymers for intravenous MMC delivery. The advantage of the MMC-SPC complex on the polymer-lipid hybrid NPs was that MMC-SPC was used as a structural element to offer the integrity of the hybrid NPs, served as a drug preparation to increase the effectiveness and safety and control the release of MMC, and acted as an emulsifier to facilitate and stabilize the formation. Compared to the PLA NPs/MMC, the PLA NPs/MMC-SPC showed a significant accumulation of MMC in the nuclei as the action site of MMC. The PLA NPs/MMC-SPC also exhibited a significantly higher anticancer effect compared to the PLA NPs/MMC or free MMC injection in vitro and in vivo. These results suggested that the MMC-loaded polymer-lipid hybrid NPs might be useful and efficient drug delivery systems for widening the therapeutic window of MMC and bringing the clinical use of MMC one step closer to reality.  相似文献   

11.
Ginsenosides are the main pharmacologically active constituents of ginseng which have been used in East Asian countries for centuries to modulate blood pressure, metabolism and immune function. Following the technological advances in isolation, purification and mass production, their mechanisms of action are gradually elucidated, providing solid basis for clinical applications. Ginseng extracts (total ginsenosides) and ginsenoside Rg3, CK, Rd have been marketed or entered clinical trials as drugs or dietary supplements. Despite the proven safety and efficacy of some ginsenosides, their applications are hindered by inferior pharmacokinetics such as low solubility, poor membrane permeability and metabolic instability. Nanoparticle formulation of drugs and implantable drug depots are effective strategies to improve the pharmacokinetics of therapeutic agents by enhancing solubility, providing protection, facilitating intracellular transport, and enabling sustained and controlled release. This mini-review summarizes the recent advances in systemic delivery of ginsenosides using liposomes, micelles, albumin-based nanoparticles, and inorganic nanoparticles, as well as local delivery of ginsenosides by electronspun fibrous membranes and hydrogels.  相似文献   

12.
The aim of study was to develop a novel drug nanocarrier via facile coating of a folate-conjugated dual-responsive copolymer with carboxylic functional groups on the surface of magnetic nanoparticles for the efficient loading and cell-specific targeting of a positively charged anticancer agent. The nanocarrier exhibited many favorable capabilities such as narrow distributed nano-ranged size (~30 nm), high drug loading capacity (~65%), and stimuli-responsive drug release. The results of various cell cytotoxicity studies such as MTT assay, DAPI staining, and flow cytometry concluded that the developed smart nanocarrier paves a way for efficient cancer therapy by the multiple targeting strategies.  相似文献   

13.
In this work, a novel biodegradable amphiphilic copolymer based on dextran and 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphoethanolamine (DPPE) was successfully prepared. The amphiphilic copolymer may self‐assemble into polymeric micelles in an aqueous solution. Fluorescence spectroscopy, dynamic light scattering (DLS), and a transmission electron microscope (TEM) method confirmed the formation of copolymeric micelles. To estimate the feasibility as novel drug carriers, doxorubicin (DOX) was incorporated into polymeric nanoparticles. The DOX‐loaded nanoparticles exhibited greater antitumor effect than free DOX for HeLa celles, suggesting that the dextran/DPPE nanoparticles have great potential as a tumor targeting drug carrier. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The poor corneal residence time of pilocarpine, an alkaloid extracted from the leaves of the Jaborandi plant, limits its ocular application. The aim of this study was to develop, characterize, and evaluate the potential of pilocarpine entrapped by poly(DL ‐lactic‐co‐glycolic acid) (PLGA) nanoparticle carriers for ocular drug delivery. Pilocarpine‐loaded nanoparticles were prepared with a double‐emulsion (water in oil in water) method and characterized with transmission electron microscopy and X‐ray diffraction analysis. The nanoparticles exhibited an average size of 82.7 nm with an encapsulation efficiency of 57%. Stability studies showed the absence of agglomeration and constancy in the amount of drug entrapped; this indicated the solidity of these particles for long‐term use. The in vitro release studies conducted in simulated tear fluid showed the sustained release of pilocarpine. In vivo evaluation of the nanoparticles was done in a rabbit model with a miosis assay and compared to an equal dose of commercially available eye drops of pilocarpine (Pilocar drops). The in vivo miosis studies showed that the duration of miotic response increased by 40% for the nanoparticles and produced an almost 68% increase in total miotic response when compared to the eye drops. In conclusion, this study clearly demonstrated the potential of pilocarpine‐loaded PLGA nanoparticles for multiplying the therapeutic effect of ophthalmic drug delivery with enhanced bioavailability and pharmacological response. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Microgels (MGs) are synthetic colloidal hydrogel particles made of three dimensional polymer networks. Their chemical composition is crucial for their use as intelligent drug release systems operated by temperature control. Herein, several MGs using N-isopropylacrylamide (Nipam)/N-isopropylmethacrylamide (Nipmam), chitosan and acrylic/methacrylic acid have been synthesized by free radical polymerization reactions (NC MGs) and the effects of surfactants and different reaction times on size and swelling properties have been investigated. MGs have been identified and characterized by dynamic light scattering and atomic force microscopy, and finally used to optimize the encapsulation protocol of the hydrophobic drug sorafenib. The drug delivery system here described has encapsulation efficiency of 40% and releases 10% of the entrapped drug over about 16 h after the temperature is raised above the volume phase transition temperature. Data suggest that MGs with optimized composition may act as properly instructed entities able to trap and release biomolecules following external stimuli.  相似文献   

16.
介绍了果胶-壳聚糖聚合物的研究情况,以及果胶-壳聚糖聚合物在口服药物释放系统中的应用研究,主要研究形态为水凝胶、复合膜、微粒、包衣和片剂,最后提出新的研究方向。  相似文献   

17.
Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.  相似文献   

18.
This review describes the preparation of core-corona type polymeric nanoparticles and their applications in various technological and biomedical fields. Over the past two decades, we have studied the synthesis and clinical applications of core-corona polymeric nanoparticles composed of hydrophobic polystyrene and hydrophilic macromonomers. These nanoparticles were utilized as catalyst carriers, carriers for oral peptide delivery, virus capture agents, and vaccine carriers, and so on. Moreover, based on this research, we attempted to develop novel biodegradable nanoparticles composed of hydrophobic poly(γ-glutamic acid) (γ-PGA) derivatives (γ-hPGA). Various model proteins were efficiently entrapped on/into the nanoparticles under different conditions: encapsulation, covalent immobilization, and physical adsorption. The encapsulation method showed the most promising results for protein loading. It is expected that biodegradable γ-hPGA nanoparticles can encapsulate and immobilize various biomacromolecules. Nanoparticles consisting of hydrophobic and hydrophilic segments have great potential as multifunctional carriers for pharmaceutical and biomedical applications, such as drug, protein, peptide or DNA delivery systems.  相似文献   

19.
Intragastric floating-retention drug delivery system (IFRDDS) could effectively prolong drug-releasing time, achieving a good clinical efficacy of encapsulated drug. In this research, the green amphiphilic resin, shellac was adopted to fabricate a continuous network as the matrix of IFRRDS by their self-assembly behavior triggered by H+. Meanwhile, the NaHCO3 and hydroxypropyl methyl cellulose (HPMC) acted as a forming agent and a precipitating agent to control the floating behavior, respectively, which could create a porous structure for lowering the true density of the tablet and continuously absorb water to enhance the density of tablet, respectively. Interestingly, the synergistic effect of NaHCO3 and HPMC was beneficial to the initiation of the floating of the complex tablet. By regulating tablet's constitution, we could tune the floating lag time, floating time, and drug-release behavior of the tablet. For example, the drug-releasing curve of the shellac-based tablet containing 3 wt% HPMC and 10 wt% NaHCO3 presented a typical linear model, which was an ideal linear drug-releasing system, and could float in 3 min and last for 16 h. Therefore, we successfully employed a facile strategy to fabricate a biobased IFRRDS with controlled drug-release and tunable intragastric floating-retention properties, which has great potential for the advanced medical industry.  相似文献   

20.
In this work, we present a new type of glutathione (GSH)-responsive polyurethane-based core‑shell nanogels (RS-CS-PUNGs) with hydrophilic methoxypolyethylene glycols (mPEG) shell, which was prepared by a one-pot synthetic method. The obtained RS-CS-PUNGs not only show a good size distribution with the hydrodynamic radii around of 20 nm, but also exhibit good stability in the organic solvent. The results demonstrate that GSH (10 mM) trigger the nanogel swelling and accelerate the loaded drug release in PBS (pH = 7.4). Although the RS-CS-PUNGs loaded with DOX show a slower cellular uptake behavior than the free doxorubicin (DOX), which is likely caused by the controlled drug release property of the nanocarrier, the enhanced cellular uptake fluorescence intensity of RS-CS-PUNGs loaded with DOX is still observed compared to the control group. Both MTT and CCK-8 assay indicate that although an obvious lower initial cytotoxicity is observed compared to free DOX at 24 h postincubation, the cytotoxicity of the RS-CS-PUNGs loaded with DOX is obvious enhanced after treated 72 h, which stayed at the similar level with free DOX. Attributing to the easy preparation progress and GSH-responsive property, RS-CS-PUNGs maybe hold the potential for further application in the field of drug delivery. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48473.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号