首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently more and more hard coatings greatly emphasize the importance of oxidation characteristics. This study attempts to dope Si into conventional CrAlN to form the CrAlSixN coatings by RF magnetron sputtering on silicon wafers to investigate how Si content affects oxidation behavior. The oxidation resistance of the CrAlSixN coatings was evaluated after annealing at temperatures ranging from 800 to 1000 °C. The X-ray diffraction patterns revealed that the CrAlSixN (x = 0-10.2 at.%) coatings exhibited better oxidation resistance than that of traditional CrAlN coatings. As observed from SEM micrographs, the CrAlSixN coatings exhibited denser feature than CrAlN one. The columnar structure, typically existing in CrAlN coating and being harmful to oxidation behavior, was also eliminated. Doping certain Si content could indeed assist CrAlN coating in prolonging diffusion paths due to their reduced gain sizes, thereby effectively inhibiting outside oxygen from penetrating into the coatings. In addition, the dense oxide layers formed on the CrAlSixN coatings when oxidized could also serve as protective layers to enhance oxidation resistance by slowing oxygen diffusion. It was demonstrated that the overall antioxidation capability of the CrAlSixN coatings after doping Si was significantly improved at elevated temperature. The superior antioxidation behavior was due to the denser barriers and the said two fine protective layers prevented outside oxygen from diffusing into the coatings.  相似文献   

2.
Cr-Al-Si-N coatings with high and low Cr/Al ratios (CrAlSiN and AlCrSiN, respectively) were deposited on WC substrates by cathodic arc and compared with a reference Cr-Al-N coating. The silicon content was close to 3 at.%. X-ray diffraction analysis showed that CrAlN and CrAlSiN coatings exhibited the cubic Cr(Al)N structure, whereas in AlCrSiN a mixture of cubic Cr(Al)N and wurtzite-type AlN was identified. All three coatings showed excellent thermal stability and oxidation resistance up to 800 °C. The tribological properties were evaluated by ball-on-disk tribometer in the temperature range 25-600 °C. Two materials were used as counterparts: alumina and 440C steel. Sliding against 440C steel balls led to the extensive wear of the balls and transfer of the ball material to the surface of the coatings. The coatings were not damaged. When sliding against alumina balls, the coating wear was low up to testing temperature 300 °C. At 400 °C, CrAlSiN coating was partially worn through. CrAlN and AlCrSiN coatings were almost immediately worn out at 600 °C. The analysis of the wear debris identified high-temperature adhesive failure of the coatings.  相似文献   

3.
《Acta Materialia》2007,55(6):2129-2135
Nanocomposite CrAlSiN compounds prepared by the cathodic arc evaporation technique were subjected to structural and mechanical characterization tests. X-ray diffraction, X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) were employed to investigate the effects of Si addition on the structure and phase development of the metastable NaCl structure of high aluminum CrAlN films. TEM studies revealed that partial substitution of the metal component by Si in CrAlN results in the nucleation of a wurtzite h-AlN phase even for amounts of silicon as low as ∼2–3 at.%. XAS measurements at the Cr and Si K-edges indicated that the local environment of Cr atoms is strongly affected by the Si addition, and that silicon may also be part of the crystalline phase. These results indicate the formation of complex Cr–Si–X compounds, where X can be N, Al or both, and the formation of composite nanocrystalline CrAlSiN films.  相似文献   

4.
This study evaluates the effects of annealing temperature and of the oxides produced during annealing processes on the tribological properties and material transfer behavior between the PVD CrN and CrAlN coatings and various counterface materials, i.e., ceramic alumina, steel, and aluminum. CrAlN coating has better thermal stability than CrN coating in terms of hardness degradation and oxidation resistance. When sliding against ceramic Al2O3 counterface, both CrN and CrAlN coatings present excellent wear resistance, even after annealing at 800 °C. The Cr-O compounds on the coating surface could serve as a lubricious layer and decrease the coefficient of friction of annealed coatings. When sliding against steel balls, severe material transfer and adhesive wear occurred on the CrN and CrAlN coatings annealed at 500 and 700 °C. However, for the CrAlN coating annealed at 800 °C, much less material sticking and only small amount of adhesive wear occurred, which is possibly due to the formation of a continuous Al-O layer on the coating outer layer. The sliding tests against aluminum balls indicate that both coatings are not suitable as the tool coatings for dry machining of aluminum alloys.  相似文献   

5.
Active element modified aluminide diffusion coatings on IN738 substrates were produced by a new route using continuously cast, aluminum alloy wires consisting of Al‐Y, Al‐Ce, Al‐La and Al‐Si‐Y. The cast wires were used as evaporation sources for ion‐vapour deposition followed by diffusion heat treatments to form nickel aluminide coatings. In order to examine the oxidation resistance of these coatings at elevated temperatures, thermal cyclic oxidation experiments were carried out in air at 1050°C. While all coatings were found to provide significant protection, the Al‐La modified coatings provided the greatest resistance to cyclic oxidation. On the other hand, with coatings based on Al‐Si‐Y alloys, while silicon has a strong ability to reduce the outward diffusion of aluminum, the adverse effect of silicon on mechanical properties of the coating, together with the formation of volatile silicon monoxide, led to catastrophic localized oxidation of the protective coatings.  相似文献   

6.
选用TiN,TiAlN,CrN和CrAlN 4种涂层材料,使用电阻炉对试样加热并保温,进行抗氧化性能实验,利用SEM、EDS和XRD获得了氧化结果。结果表明:Ti基涂层的氧化机制以O原子向涂层内部扩散为主;Cr基涂层的抗氧化机制为N原子和Cr离子向涂层表面的扩散所形成的微孔诱发的氧化;Cr基涂层比Ti基涂层具有较好的抗氧化性;Al的加入使得TiAlN与CrAlN涂层的氧化性能和高温后硬度提高,特别是CrAlN氧化后生成的致密Cr2O3和Al2O3混合氧化物使其抗氧化性能达到最优;氧化及涂层与基体的热涨失配使得几类涂层最终开裂失效;四种涂层的抗氧化能力为CrAlN>TiAlN>CrN>TiN。  相似文献   

7.
Ti-Si-N coatings were deposited on M2 steel by arc evaporation using a Ti-Si composite target in an industrial reactor. The films structure before and after heat treatment at 700 °C was characterised by XRD. In addition, two types of quantitative experiments were performed in thermobalance: oxidation rate was deduced from isothermal thermogravimetric analyses at 800 °C, while the temperature of oxidation beginning (Tc) was measured in dynamic mode. Tc was then calculated by a mathematical approximation based on the non-linear least square. The results were compared to those obtained using TiN and SiNx standards.Depending on the deposition conditions, ternary films have been deposited with an atomic ratio Si/Ti of 0.10 and 0.15. The hardness of the films was close to 40 GPa. Only the TiN phase was detected by XRD. The mean crystal size was estimated to be in the 6-8 nm range, which suggested the nanocomposite nature of the coatings. After air oxidation at 700 °C, it was found that this crystal size was not affected by the thermal treatment, indicating a good thermal stability of the structure. Moreover, incorporation of silicon into TiN-based coatings led to a drastic decrease of their oxidation rate, together with a shift of 200 °C of Tc. The high resistance of oxidation of Ti-Si-N films at elevated temperature is attributable to the network of refractory SiNx, which acted as a diffusion barrier for oxygen and insulated TiN nanograins from the aggressive atmosphere.  相似文献   

8.
Nanostructured Ti–B–N and Ti–Si–B–N coatings were deposited on silicon substrate by ion implantation assisted magnetron sputtering technique. To evaluate the oxidation resistance and thermal stability the coatings were annealed on air and in vacuum at 700–900°C. As-deposited and thermal-treated coatings were investigated by transmission electron microscope, selected area electron and x-ray diffraction, atomic force microscopy, Raman and glow discharge optical emission spectroscopy. Nanoindentaion tests were also performed. Obtained results show that Si alloying significantly improves the thermal stability of Ti–B–N coatings and increases their oxidation resistance up to 900°C. It was shown that formation of protective amorphous SiO2 top-layer on the coating surface plays important role in the increasing of the oxidation resistance.  相似文献   

9.
Approximately 1.5 μm thick CrN and CrAlN coatings were deposited on silicon and mild steel substrates by reactive direct current (DC) magnetron sputtering. The structural and mechanical properties of the coatings were characterized using X-ray diffraction (XRD) and nanoindentation techniques, respectively. The bonding structure of the coatings was characterized by X-ray photoelectron spectroscopy (XPS). The surface morphology of the coatings was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The XRD data showed that the CrN and CrAlN coatings exhibited B1 NaCl structure. Nanoindentation measurements showed that as-deposited CrN and CrAlN coatings exhibited a hardness of 18 and 33 GPa, respectively. Results of the surface analysis of the as-deposited coatings using SEM and AFM showed a more compact and dense microstructure for CrAlN coatings. The thermal stability of the coatings was studied by heating the coatings in air from 400 to 900 °C. The structural changes as a result of heating were studied using micro-Raman spectroscopy. The Raman data revealed that CrN coatings got oxidized at 600 °C, whereas in the case of CrAlN coatings, no detectable oxides were formed even at 800 °C. After annealing up to 700 °C, the CrN coatings displayed a hardness of only about 7.5 GPa as compared to CrAlN coatings, which exhibited hardness as high as 22.5 GPa. The potentiodynamic polarization measurements in 3.5% NaCl solution indicated that the CrAlN coatings exhibited superior corrosion resistance as compared to CrN coatings.  相似文献   

10.
Nanocomposite coatings of CrN/Si3N4 and CrAlN/Si3N4 with varying silicon contents were synthesized using a reactive direct current (DC) unbalanced magnetron sputtering system. The Cr and CrAl targets were sputtered using a DC power supply and the Si target was sputtered using an asymmetric bipolar-pulsed DC power supply, in Ar + N2 plasma. The coatings were approximately 1.5 μm thick and were characterized using X-ray diffraction (XRD), nanoindentation, X-ray photoelectron spectroscopy and atomic force microscopy. Both the CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings exhibited cubic B1 NaCl structure in the XRD data, at low silicon contents (< 9 at.%). A maximum hardness and elastic modulus of 29 and 305 GPa, respectively were obtained from the nanoindentation data for CrN/Si3N4 nanocomposite coatings, at a silicon content of 7.5 at.%. (cf., 24 and 285 GPa, respectively for CrN). The hardness and elastic modulus decreased significantly with further increase in silicon content. CrAlN/Si3N4 nanocomposite coatings exhibited a hardness and elastic modulus of 32 and 305 GPa, respectively at a silicon content of 7.5 at.% (cf., 31 and 298 GPa, respectively for CrAlN). The thermal stability of the coatings was studied by heating the coatings in air for 30 min in the temperature range of 400-900 °C. The microstructural changes as a result of heating were studied using micro-Raman spectroscopy. The Raman data of the heat-treated coatings in air indicated that CrN/Si3N4 and CrAlN/Si3N4 nanocomposite coatings, with a silicon content of approximately 7.5 at.% were thermally stable up to 700 and 900 °C, respectively.  相似文献   

11.
The corrosion behavior of cathodic arc physical vapor deposited CrAlN and TiAlN coatings were examined in 1 M HCl solution before and after vacuum annealing at 700, 800, 900, and 1000 °C. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) methods were used to study the corrosion behavior and porosity of the coatings in comparison with the bare steel substrate (304SS). Structural and mechanical characterization of the coatings were also conducted. It is found that with increasing annealing temperature, the mechanical properties of TiAlN increased due to age hardening caused by spinodal decomposition while the hardness of CrAlN decreased as result of relaxation. Similarly, EIS and PDP results revealed that the as‐deposited and annealed coatings offer higher corrosion resistance as compared to the bare 304SS substrate. The coatings susceptibility to corrosion is reduced after annealing as indicated by the increasing nobility of Ecorr. Both PDP and EIS tests revealed that CrAlN coating annealed at 1000°C exhibited superior corrosion resistance properties. It is found that the reduced current density for CrAlN coating annealed at 1000°C was due to the reduction in the porosity. Annealed TiAlN coating follows similar behavior until an optimum annealing temperature of 800°C. Beyond this temperature, porosity enlargement and an increase in the number of pores subsequent to structural changes deteriorated the corrosion resistance of TiAlN coating.  相似文献   

12.
热轧组织对冷轧无取向硅钢退火织构及组织的影响   总被引:1,自引:1,他引:0  
对不同加热温度处理的热轧低硅钢带进行了冷轧及退火实验,分析了热轧钢带的组织对冷轧无取向硅钢再结晶退火过程中的组织及织构的影响。结果表明:热轧组织对冷轧无取向电工钢冷轧板再结晶组织及织构演变有重要影响;等轴晶粒组织的热轧钢带比混晶组织的热轧钢带冷轧后再结晶退火快,且退火后晶粒尺寸均匀;随着等轴晶粒尺寸增加,冷轧退火后形成的冷轧硅钢{110}类型的织构增强,{100}类型的织构减弱;表明热轧组织为等轴晶粒时,不利于冷轧无取向硅钢磁性能的改善。  相似文献   

13.
Refractory metal alloys play an important role as highly thermostable materials in the air‐ and spacecraft industry. Due to their lack of oxidation stability at elevated temperatures it is necessary to protect them with coatings. The thermal‐cycle‐stability of Si20Cr20Fe‐coatings on Nb10W2.5Zr and Ta10W was investigated by means of imaging Secondary Ion Mass Spectrometry; this showed the inward‐diffusion of oxygen and other contaminants along cracks formed in the coating during thermal cycling and subsequent precipitation of oxides at the grain boundaries, leading to brittle fracture behaviour of the oxygen‐affected surface zone. EDX measurements have been taken to determine the composition of the phases established in this complex system.  相似文献   

14.
刘利平 《金属热处理》2022,47(2):224-228
以Ni-11Cr合金作为基材,采用多弧离子镀工艺在其表面制备Cr/AlCrN与Cr/AlCrSiN涂层,并对其在700~900 ℃温度下进行真空热处理,研究热处理温度及Si元素对Cr/AlCr(Si)N涂层组织和红外反射率的影响。结果表明:真空热处理后两涂层形成了Cr2O3与Al2CrO3的特征峰,900 ℃热处理后,氧化物晶体结构特征衍射峰明显增加。两种涂层的组织呈柱状形态,在Cr/AlCrN涂层中存在许多hcp-CrN纳米晶;Cr/AlCrSiN涂层中形成了粒径尺寸均匀的hcp-AlN纳米晶。真空热处理温度越高,两个涂层红外稳定反射率越大,Ni扩散系数和热处理温度之间呈现单调增加的变化趋势,Cr/AlCrN涂层具有更优异的低红外稳定反射率,Cr/AlCrSiN涂层具备高的红外稳定反射率。  相似文献   

15.
近年来,现代工业对材料的性能提出了日益严苛的要求,表面技术改性逐渐成为提升材料表面性能的有效手段。CrAlN涂层因其良好的力学性能和优异的抗高温氧化性能,在保护性涂层领域受到广泛关注。本文综述了近10年来CrAlN基硬质涂层的最新研究进展,包括CrAlN涂层的结构和性能、制备工艺、合金化和以CrAlN为基的纳米多层结构涂层和纳米复合结构涂层的设计和优势等,讨论了CrAlN涂层潜在的发展方向,以期推动该涂层在保护性涂层领域的发展和应用。  相似文献   

16.
为研究氮气含量的变化对AlCrTaTiZrV高熵合金薄膜性能的影响,检验在最佳氮气含量下厚度为15 nm的(AlCrTaTiZrV)N扩散阻挡层的热稳定性。采用直流磁控溅射设备在N型Si(111)基底上溅射不同氮气含量的高熵合金氮化物;选取最佳氮气含量为制备条件,在硅基底上沉积15 nm厚的AlCrTaTiZrVN10高熵合金氮化物为扩散阻挡层,并在阻挡层顶部沉积50 nm厚度的Cu膜,最终形成Si/AlCrTaTiZrVN10/Cu三层堆叠结构。利用真空退火炉将Si/AlCrTaTiZrVN10/Cu薄膜体系在500 ℃下进行不同时间的退火处理,用以模拟恶劣的工作环境。利用场发射扫描电子显微镜(FESEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)及四探针电阻测试仪(FPP)对试样的表面形貌、粗糙度、物相组成及方块电阻和进行表征。试验结果为:当氮气含量低于10%时,高熵合金氮化物薄膜为非晶结构。当氮气含量为20%时,高熵合金氮化物薄膜呈现FCC结构,并随着氮气含量的增加,薄膜的结晶性得到提高。薄膜表面的粗糙度在氮气含量为10%时最低,Ra仅为0.124 nm。三层堆叠结构500 ℃退火8 h后,Cu表面发生团聚,薄膜的方阻维持在较低的0.070 Ω/□,且并未发现Cu-Si化合物。厚度为15 nm的非晶结构AlCrTaTiZrVN10薄膜在500 ℃退火8 h后,依旧可以抑制Cu的扩散,表现出了优异的热稳定性及扩散阻挡性能。  相似文献   

17.
随着发动机的服役温度日益升高,工作环境日益恶劣,涡轮叶片极易在高温环境中氧化,大大降低了叶片的使用寿命。如何在低成本下制备保护性能好的高温防护涂层,是当前国内外研究的重点。MCrAlY包覆涂层可分为NiCrAlY涂层、CoCrAlY涂层和NiCoCrAlY涂层,这3类涂层的抗氧化性能和抗腐蚀性能较好,又有很好的塑韧性和抗热疲劳性能,因此可作为涂层或热障涂层的黏结层材料。综述了涂层中主要元素(Al、Cr、Co、Y)、掺杂合金元素(Ta、Re、Si、Pt)、涂层制备工艺和预处理工艺对MCrAlY涂层性能的研究进展。结果表明,可以通过调节MCrAlY涂层的成分来实现涂层性能的调控。向MCrAlY涂层中掺入Si、Ta和Re等活性元素,可显著提高涂层的抗高温氧化性能,以进一步提高发动机的工作效率和满足高温的工作环境需求。总结了采用细化涂层晶粒、掺杂纳米颗粒和制备梯度复合涂层等方法来提高MCrAlY涂层的抗氧化性能和抗腐蚀性能的研究现状,对MCrAlY涂层的发展趋势进行了展望。  相似文献   

18.
3-μm thick Ti-Si-N coatings were deposited on polished X38CrMoV5 substrates by sputtering a composite Ti-Si target in Ar-N2 reactive mixture. Oxidation tests were performed in air at 700 °C during 2 h. Whatever the silicon content in the range 0-4 at.%, no silicon containing compound was detected by XRD before air oxidation and only the TiN phase was evidenced. The mean grain size estimated from the full width at half maximum of the TiN (111) diffraction peak was close to 10 nm. As commonly reported for Ti-Si-N films, the hardness showed a maximum at 51 GPa versus the Si content. After oxidation of the TiN film, XRD and micro-Raman analyses revealed the occurrence of the TiO2 rutile phase in the whole films thickness, indicating the total oxidation of the TiN film. On the other hand, the addition of silicon into the TiN-based coatings induced a strong improvement of the film oxidation resistance. Indeed, the oxide thickness was reduced to nearly 0.4 μm for films containing 1.2 at.% Si. Moreover, the silicon addition gave rise to a change in the structure of the oxide layer. In fact, weak diffraction peaks of the TiO2 anatase phase were detected by XRD. The presence of the anatase phase was clearly shown by micro-Raman spectroscopy, which is a very sensitive method to detect this TiO2 phase. The intensity of the anatase micro-Raman bands increased with the silicon concentration, whereas that of rutile decreased.  相似文献   

19.
This study shows the influence of sodium carbonate coatings on the austenitic AISI 330 (Fe–35Ni–19Cr–1.3Si) oxidized during 48 hr at 900°C. The N2‐5 vol% H2 gaseous environment was used to simulate industrial heat treatment conditions. Silica scale formation is promoted by low oxygen‐containing gaseous environments and the high alloy silicon content. On this alloy, an amorphous silica scale is formed after the blank material oxidation. It indicates that silicon is free to diffuse in the alloy and forms a silica scale at the internal interface. On Na2CO3‐coated specimens, no silica scale is formed. Then, sodium combines with silicon to form amorphous glass particles. A comparison has been performed with results obtained on a AISI 330Cb niobium containing alloy in the same oxidizing conditions. It is then concluded that sodium carbonate coatings could only favor silica formation on niobium containing alloy due to a reaction between sodium and niobium.  相似文献   

20.
In this work, we have studied the influence of the coating design and composition on the oxidation behavior of AlxCr1−xN (x = 0.70) coatings. In particular, we have studied the effect brought about by the deposition of an additional subsurface titanium nitride barrier layer as well as by the doping of the AlCrN-based coatings by tungsten, boron and silicon. The coatings studied have been deposited using the cathodic arc vacuum (CAV) technique. The multilayered AlCrN/TiN coatings with TiN sublayer were oxidized in air at 900 °C over 3 h and then analyzed by Glow Discharge Optical Emission Spectroscopy (GDOES) and X-ray photoelectron spectroscopy (XPS). Oxidation tests were performed in air at 900 and 1100 °C for the AlCrN and AlCrWN, AlCrSiN, and AlCrBN coatings. In each case weight gain was measured and the surface morphology of the oxidized samples were studied using Secondary Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The results obtained showed that the oxidation behavior of the aluminum rich AlCrN-based coatings could be improved in two ways: (1) by controlling the chromium outward diffusion rate in multi-layered coatings and (2) by alloying the AlCrN-based coatings with Si. Both improvements are related to the enhancement of the protective oxide film formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号