首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The waste pomace of olive oil factory (WPOOF) was tested for its ability to remove chromium(VI) from aqueous solution by batch and column experiments. Various thermodynamic parameters, such as DeltaG degrees , DeltaH degrees and DeltaS degrees have been calculated. The thermodynamics of chromium(VI) ion onto WPOOF system indicates spontaneous and endothermic nature of the process. The ability of WPOOF to adsorb chromium(VI) in a fixed bed column was investigated, as well. The effect of operating parameters such as flow rate and inlet metal ion concentration on the sorption characteristics of WPOOF was investigated. The longest breakthrough time and maximum of Cr(VI) adsorption is obtained at pH 2.0. The total adsorbed quantities, equilibrium uptakes and total removal percents of chromium(VI) related to the effluent volumes were determined by evaluating the breakthrough curves obtained at different flow rates and different inlet chromium(VI) concentrations for adsorbent. The data confirmed that the total amount of sorbed chromium(VI) and equilibrium chromium(VI) uptake decreased with increasing flow rate and increased with increasing inlet chromium(VI) concentration. The Adams-Bohart model were used to analyze the experimental data and the model parameters were evaluated.  相似文献   

2.
The objective of this study is to assess the uptake of hexavalent chromium (Cr(VI)) from aqueous solutions onto activated carbons (AC) produced from wood. Two activated carbons are tested, a KOH-activated carbon and a commercial H3PO4-activated carbon (Acticarbone CXV). The adsorption of Cr(VI) is maximal at the lowest values of pH (pH 3) and increases with temperature for both adsorbents. The KOH-activated carbon shows higher capacity for adsorption of Cr(VI) than Acticarbone. The sorption isotherms fit the Langmuir model accurately. The adsorption reaction was found to obey a pseudo second-order rate. The activation energy and the pre-exponential factor as well as the thermodynamic functions related to adsorption reaction, DeltaS degrees , DeltaH degrees , DeltaG degrees , were determined. Nevertheless, the global reaction rate is probably controlled by the intra-particular diffusion of Cr(VI) and the mass diffusivity of Cr(VI) was evaluated.  相似文献   

3.
This study focused on the biosorption of total chromium onto red algae (Ceramium virgatum) biomass from aqueous solution. Experimental parameters affecting biosorption process such as pH, contact time, biomass dosage and temperature were studied. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherms. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of C. virgatum biomass for total chromium was found to be 26.5 mg/g at pH 1.5 and 10 g/L biomass dosage, 90 min equilibrium time and 20 °C. From the D–R isotherm model, the mean free energy was calculated as 9.7 kJ/mol, indicating that the biosorption of total chromium was taken place by chemisorption. The calculated thermodynamic parameters (ΔG°, ΔH°and ΔS°) showed that the biosorption of total chromium onto C. virgatum biomass was feasible, spontaneous and exothermic at 20–50 °C. Kinetic evaluation of experimental data showed that the biosorption processes of total chromium followed well pseudo-second-order kinetics.  相似文献   

4.
Cr(VI) is a priority pollutant and has been documented to be harmful to fauna, flora and human beings and chromium containing water and wastewater are hazardous. Removal of Cr(VI) by adsorption on a non-toxic natural substance, riverbed sand has been investigated. A maximum removal of 74.3% was noted at 0.50 x 10(-4)M concentration of Cr(VI) in solution. Kinetic and equilibrium studies of Cr(VI) removal have been carried out. Chemical analysis of the adsorbent revealed SiO2 to be its major component. Kinetic data of adsorption was fitted by Lagergreen's model and k(ad), the rate constant of adsorption, was found be maximum 2.69 x 10(-2)min(-1) at 25 degrees C with minimum at 35 degrees C. Values of coefficients of intra-particle diffusion and mass transfer have been determined at different values of temperature. Langmuir's model has been used for equilibrium studies and the constants have been calculated. The studies conducted show the process of Cr(VI) removal to be exothermic in nature.  相似文献   

5.
The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fast and the equilibrium was established within 6-10min. The adsorption data could be well interpreted by the Langmuir and Temkin model. The maximum adsorption capacities obtained from the Langmuir model are 51.813mgg(-1), 48.780mgg(-1) and 45.872mgg(-1) at 293, 303 and 313K, respectively. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved in the present case. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using 0.1N NaOH solutions.  相似文献   

6.
Two low cost adsorbents were prepared by using groundnut husk and were tested for the removal of chromium. All the experiments were carried out in batch process with chromium spiked samples of drinking water. Silver impregnated groundnut husk carbon and groundnut husk carbon were tested for the removal of chromium(VI). Effects of adsorbent quantity, pH, contact time and agitation rate were investigated on removal of chromium. The adsorption data were fitted well by Freundlich adsorption isotherm. Approximately, 97% of hexavalent chromium was removed at pH 3 within 5h. It was found that adsorbents chemically modified with an oxidizing agent demonstrated better chromium removal capabilities as compared to pure adsorbents in terms of their adsorption rate. On the basis of present studies, it can be concluded that groundnut husk carbon oxidized with silver treatment, has a higher chromium adsorption capacities.  相似文献   

7.
《Advanced Powder Technology》2020,31(9):4018-4030
This paper demonstrates functionalization of a new hybrid nanoclay for effective adsorption of chromium(VI) ions from wastewater. Halloysite nanotubes (HNTs) were functionalized by poly(amidoamine) dendritic polymers (HNTs-(DEN-NH2)) via a convergent synthetic route by carboxylic acid as a linkage. Various characterization methods confirm that poly(amidoamine) dendritic groups were effectively grafted onto the surface of HNTs that found a high specific surface area of 75 m2/g, as measured by micrometric BET analyzer. Moreover, the adsorption activity of HNTs-(DEN-NH2) for Cr(VI) was systematically investigated using a batch solution that reveals the removal efficiency of 98% for HNTs-(DEN-NH2) comparing to 23% for pristine HNTs, at optimum conditions. The enhancement of Cr(VI) removal for HNTs-(DEN-NH2) comparing to HNTs was mainly ascribed to be due to the electrostatic interaction, that was confirmed by the results of Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Moreover, regeneration studies display that HNTs-(DEN-NH2) can maintain removal Cr(VI) with high efficiency after four consecutive cycles.  相似文献   

8.
Multiwalled carbon nanotubes (MWCNTs) were purified by mixed HNO3/H2SO4 solution and were employed as adsorbents to study adsorption kinetics and thermodynamics of trihalomethanes (THMs) from chlorinated drinking water. The amount of THMs adsorbed onto CNTs decreased with a rise in temperature and high adsorption capacities were found at 5 and 15 degrees C. Under the same conditions, the purified CNTs possess two to three times more adsorption capacities of CHCl3, which accounts for a major portion of THMs in the chlorinated drinking water, than the commercially available PAC suggesting that CNTs are efficient adsorbents. The thermodynamic analysis revealed that the adsorption of THMs onto CNTs is exothermic and spontaneous.  相似文献   

9.
Extractive removal of Cr (VI) was carried out from chloride solutions using cyanex 923 mixed with kerosene. The efficiency of this extractant was studied under various experimental conditions, such as concentration of different mineral acids in the aqueous phase, concentration of cyanex 923 and Cr (VI) present in the initial aqueous feed, temperature and time of extraction, organic to aqueous (O/A) phase ratio. Percentage Cr (VI) extraction decreases with the increase in temperature at varying concentration of cyanex 923. The interference of the impurities usually associated with Cr (VI) such as Cr (III), Cu, Ni, Fe (II), Zn, Chloride and sulphate, etc., were examined under the optimized conditions and only Zn was found to interfere. Under the optimum experimental conditions 98.6-99.9% of Cr (VI) was extracted in 3-5 min at O/A of 2 with the initial feed concentration of 1g/L of Cr (VI). The extracted Cr (VI) was quantitatively stripped with 1M NaOH and the organic phase obtained after the stripping of Cr (VI) was washed with dilute HCl solution to neutralize any NaOH trapped/adhered to the solvent and then with distilled water. This regenerated solvent was reused in succeeding extraction of chromium (VI). Finally a few experiments were performed with the synthetic effluent from an electroplating industry.  相似文献   

10.
In the present study, hexagonal mesoporous silica (HMS) was synthesized and modified by tannic acid as a natural poly-phenol and amine (TA-A-HMS) and was applied for the adsorption of bovine serum albumin (BSA) from aqueous media. To investigate the structure of HMS and TA-A-HMS, SEM, TEM, XRD, BET and FTIR analysis were applied. The effects of pH, adsorbent dosage, contact time and temperature on the BSA adsorption were studied. After modification, BET surface area of HMS was reduced from 885?m2/g to 51?m2/g which confirms the presence of tannin and amine groups that inhibit the adsorption of nitrogen molecules. According to the results of equilibrium data, it is shown that Langmuir isotherm with maximum adsorption capacity of 1000?mg/g is the predominant model and adsorption is mono-layer. Kinetic and thermodynamic studies also reveal that adsorption kinetic followed by pseudo-second order model and the adsorption process is exothermic.  相似文献   

11.
In this study, the phenol adsorption capacity of cetyltrimethylammonium bromide modified clays (MMT-CTAB) and cetyltrimethylammonium bromide modified pulp tea (WPT-CTAB) were studied. In batch adsorption experiments performed with MMT-CTAB, the effects of parameters such contact time, phenol concentration, pH of solution and adsorbent dosage were investigated. The effect of temperature on phenol adsorption onto MMT-CTAB and WPT-CTAB was examined; equilibrium and thermodynamic studies were completed. The highest phenol removal was found at pH 4.0 for MMT-CTAB and WPT-CTAB. To analyze the kinetics of phenol adsorption onto MMT-CTAB, the pseudo first-order and pseudo second-order kinetic models were applied. The kinetic data fitted better to the pseudo second-order model than the pseudo first-order kinetic model for MMT-CTAB. The characterization of adsorbents in phenol adsorption was clarified with the FTIR technique. Thermodynamic parameters such as ΔH°, ΔS° and ΔG° were calculated for each adsorption process. The adsorption process was found to be exothermic and spontaneous for phenol adsorption by MMT-CTAB and WPT-CTAB. The results were analyzed with the Langmuir, Freundlich, Temkin and Harkins–Jura equations using linearized correlation coefficients at different temperatures. The Langmuir equation was found to best represent the equilibrium data for phenol adsorption onto MMT-CTAB and WPT-CTAB.  相似文献   

12.
Han Z  Qi L  Shen G  Liu W  Chen Y 《Analytical chemistry》2007,79(15):5862-5868
A surface plasmon-enhanced resonance light scattering method has been developed. The method features strong light scattering but very weak background, and after incorporating with selective sample extraction and ion-association complexation using rhodamine B and KI as reactants, it could selectively determine Cr(VI) in both of standard and real samples, reaching a limit of detection down to 20 nM which is about 40-fold as sensitive as flame atomic absorption spectrometry and 140-fold as sensitive as fluorescent spectroscopy. Its linear working range was found in between 40 and 320 nM, with a relative standard deviation of peak height at <3% (n = 5) and recovery between 94.8-104.9%. In theory, the method is applicable to the analysis of all substances able to produce or destroy I2.  相似文献   

13.
This paper deals with an investigation on coir-based adsorbent, puresorbe, in the removal of chromium(VI) from the aqueous solutions. The adsorption of chromium(VI) was carried out by varying the parameters such as agitation time, metal concentration, adsorbent dose, temperature and pH. The experimental isotherm data were analyzed using Langmuir, Freundlich and Redlich and Peterson isotherms. Adsorption followed second order rate expression for the particle size 250–500 μm at pH 2. The monolayer adsorption capacity is 76.92 mg chromium(VI) per gram of puresorbe. Thermodynamic parameters show the endothermic nature of chromium(VI) adsorption. Desorption study carried out using distilled water adjusted to pH of 2–10, suggests that chemisorption might be the mode of adsorption.  相似文献   

14.
Chromium is commonly found in huge quantities in tannery wastewaters. For this reason, the removal and recovery of the chromium content of tannery wastewaters is crucial for environmental protection and economic reasons. Removal and recovery of chromium were carried out by using low-cost potential adsorbents. For this purpose three types of activated carbon; C1, the waste generated from sugar industry as waste products and the others (C2, C3) are commercial granular activated carbon, were used. The adsorption process and extent of adsorption are dependent on the physical and chemical characteristics of the adsorbent, adsorbate and experimental condition. The effect of pH, particle size and different adsorbent on the adsorption isotherm of Cr(III) was studied in batch system. The sorption data fitted well with Langmuir adsorption model. The efficiencies of activated carbon for the removal of Cr(III) were found to be 98.86, 98.6 and 93 % for C1, C2 and C3, respectively. The order of selectivity is C1>C2>C3 for removal of Cr(III) from tannery wastewater. Carbon "C1" of the highest surface area (520.66 m(2)/g) and calcium content (333.3 mg/l) has the highest adsorptive capacity for removal of Cr(III). The results revealed that the trivalent chromium is significantly adsorbed on activated carbon collected from sugar industry as waste products and the method could be used economically as an efficient technique for removal of Cr(III) and purification of tannery wastewaters.  相似文献   

15.
Arsenite (As(III)) and arsenate (As(V)) removal by direct contact membrane distillation (DCMD) were investigated with self-made polyvinylidene fluoride (PVDF) membranes in the present work. Permeability and ion rejection efficiency of the membrane were tested before the arsenic removal experiments. A maximum permeate flux 20.90 kg/m(2)h was obtained, and due to the hydrophobic property, the PVDF membrane had high rejection of inorganic anions and cations which was independent of the solution pH and the temperature. The experimental results indicated that DCMD process had higher removal efficiency of arsenic than pressure-driven membrane processes, especially for high-concentration arsenic and arsenite removal. The experimental results indicated that the permeate As(III) and As(V) were under the maximum contaminant limit (10 microg/L) until the feed As(III) and As(V) achieved 40 and 2000 mg/L, respectively. The 250 h simultaneous DCMD performance of 0.5mg/L As(III) and As(V) solution was carried out, respectively. The permeate arsenic was not detected during the process which showed the PVDF membrane had stable arsenic removal efficiency. Membrane morphology changed slightly after the experiments, however, the permeability and the ion rejection of the membrane did not change.  相似文献   

16.
The biosorption characteristics of Cd(II) ions using the red alga (Ceramium virgatum) were investigated. Experimental parameters affecting the biosorption process such as pH, contact time, biomass dosage and temperature were studied. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherms. The biosorption capacity of C. virgatum biomass for Cd(II) ions was found to be 39.7 mg/g. From the D-R isotherm model, the mean free energy was calculated as 12.7 kJ/mol, indicating that the biosorption of Cd(II) the metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Cd(II) ions onto C. virgatum was feasible, spontaneous and exothermic at 293-323 K. Evaluation of experimental data in terms of biosorption kinetics showed that the biosorption of Cd(II) C. virgatum followed well pseudo-second-order kinetics.  相似文献   

17.
Biosorption equilibrium, kinetics and thermodynamics of chromium(VI) ions onto cone biomass were studied in a batch system with respect to temperature and initial metal ion concentration. The biosorption efficiency of chromium ions to the cone biomass decreased as the initial concentration of metal ions was increased. But cone biomass of Pinus sylvestris Linn. exhibited the highest Cr(VI) uptake capacity at 45 degrees C. The biosorption efficiency increased from 67% to 84% with an increase in temperature from 25 to 45 degrees C at an initial Cr(VI) concentration of 300 mg/L. The Langmuir isotherm model was applied to experimental equilibrium data of Cr(VI) biosorption depending on temperature. According to Langmuir isotherm, the monolayer saturation capacity (Q(max)) is 238.10 mg/g. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data for initial Cr(VI). The pseudo-second-order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first-order kinetic model. The activation energy of biosorption (E(a)) was determined as 41.74 kJ/mol using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of biosorption (DeltaG(0), DeltaH(0) and DeltaS(0)) were also evaluated.  相似文献   

18.
Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 degrees C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (DeltaH degrees), standard entropy (DeltaS degrees) and standard free energy (DeltaG degrees) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.  相似文献   

19.
In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).  相似文献   

20.
A reliable and effective method for the determination of trace molybdenum in effluents is proposed. Molybdenum (VI) is analyzed by Microwave Plasma Torch Optical Emission Spectrometry (MPT-OES) based on the adsorption collection onto microcrystalline anthracene modified with 8-hydroxyquinoline. The possible reaction mechanism was discussed in detail and the optimum conditions for adsorption of Mo (VI) were confirmed. The experimental data were fitted well with the pseudo-second-order kinetic model and Langmuir model at all studied temperatures. The calculated thermodynamic parameters (ΔG?, ΔH? and ΔS?) showed that the adsorption of molybdenum onto microcrystalline anthracene was feasible, spontaneous and endothermic at 280–320 K. The recovery of this method is in the range of 96.5%–103.3% with preconcentration factor of 100 and the limit detection after preconcentration is 0.078 μg L? 1. The proposed method has been successfully applied to the determination of trace Mo (VI) in environmental water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号