首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the results of calculations of specific energy consumption, E s , performed on a well-mixed fluidized bed dryer simulator. Exhaust air temperature–humidity loci required to yield a specified outlet moisture content were also determined. Most of the calculations related to solids whose drying rate was gas-film controlled. Six model drying curves were employed to examine the effects of drying rate and hygroscopicity in addition to the normal operating parameters. The results indicated that E s was highest for slow-drying hygroscopic solids and lowest for fast-drying, non-hygroscopic solids. Specific energy consumption increased with decreasing bed temperature and outlet moisture content and with increasing heat loss but was independent of solids loading and airflow rate. For both the aforementioned solids and a much slower drying material (wheat), there was close agreement between the zero heat loss data and a single theoretical curve approximating the performance of an ideal adiabatic dryer. Distinct differences between the behavior of well-mixed and plug flow fluidized bed dryers are reported.  相似文献   

2.
Wan Ramli  Wan Daud 《Drying Technology》2007,25(7):1229-1235
Plug flow fluidized bed cross-flow dryers have been used in drying of particulate solids such as paddy and other grains for many years. However, simulation of the performance of any particular design of the dryer has always been problematic due to the inadequate overall empirical models used that are too inflexible and too specific to the particular design. In addition, previous theoretical models of the plug flow fluidized bed cross-flow dryer did not model the gas cross flow properly and had difficulty in modeling the moving solid bed. A new steady-state cross-flow model of the dryer that models the gas cross-flow is proposed. The profiles for the solids and air moisture contents and temperatures were found to be dependent on the gas-solid flow ratio, G/F, the specific heat demand, CPY(TI - TA)/(YE - YI), the total number of a transfer units, NT = Gε/KφaSL and the specific drying load, (XI - XP)/ (YE - YI). The model was validated by comparing the simulated data with experimental data that were obtained by drying paddy in a plug flow fluidized bed cross-flow dryer pilot plant. The model was found to estimate very well the solids moisture content and temperature, the gas moisture content and temperature profiles, and the driving force profile.  相似文献   

3.
In a recent article, Baker described a novel technique for estimating the energy consumption of well-mixed fluidized bed dryers based on the use of experimental drying curves. An integrated approach to performing sizing and energy consumption calculations for such dryers using this technique is described in the present paper. A computer program, which includes not only the dryer simulator but also a heat recovery module and an exhaust air recycle option, is used to evaluate the viability of different energy-conservation strategies. The effects of operating parameters such as bed temperature, solids loading and air velocity on energy consumption and bed area are also explored. The observed drying kinetics are shown to have a major effect on the optimal design and operation of the dryer.  相似文献   

4.
ABSTRACT

In a recent article, Baker described a novel technique for estimating the energy consumption of well-mixed fluidized bed dryers based on the use of experimental drying curves. An integrated approach to performing sizing and energy consumption calculations for such dryers using this technique is described in the present paper. A computer program, which includes not only the dryer simulator but also a heat recovery module and an exhaust air recycle option, is used to evaluate the viability of different energy-conservation strategies. The effects of operating parameters such as bed temperature, solids loading and air velocity on energy consumption and bed area are also explored. The observed drying kinetics are shown to have a major effect on the optimal design and operation of the dryer.  相似文献   

5.
A diffusion-based mathematical model is presented for the prediction of the dynamics of drying in continuous well-mixed fluidized/spouted beds. Numerical techniques are used to solve the model equations. The outlet solids moisture content, the outlet air humidity and solids temperature are predicted as a function of time for the falling rate drying period. The model is helpful in describing the drying process during the startup periods and in studying open loop behavior of drying process. The model is also useful in designing control system for fluidized/spouted bed dryers.  相似文献   

6.
Incorporation of agitation to spouted and fluidized bed dryer result in significant increases in the drying capacity (Qs), although product retention persist, which is reduced by increasing the air flow. The physical phenomena occurring in these dryers with several liquid substrates was analyzed and the residence time distributions (RTD) were obtained by the use of dye tracers. The residence time (τ) was found to be a function of the rate of agitation (n) and reaches a minimum at n = nopt, which was characteristic for each type of substrate, and where maxima also appeared for the drying capacity (Qs = Qs max) and the heat transfer coefficient (Nup = Nup max). The RTD can be modeled by series of consecutive dryers and a modified Vanderschuren and Delvosalle model can be employed to calculated moisture of the dry product.  相似文献   

7.
The effects of gas velocity, inlet gas temperature and the solid feed rate on the drying efficiency, the outlet solid moisture content, bed temperature in each stage, the outlet gas humidity and temperature in a rectangular acryl multistage fluidized bed (0.172 m×0.192 m×1.5 m-high) with a downcomer (0.04 m-I.D.) were investigated. The experiments were performed by using 1.9 mm millet particles. The final moisture contents of the solids increased with increasing the solid feed rate. The drying efficiency increased with increasing the wetted solid feed rate but decreased with increasing the inlet gas temperature. The drying performance of the multistage fluidized bed was compared with the single-stage fluidized bed and found to be superior under identical operation conditions. The model predicted values were well matched with the experimental data in the multistage fluidized bed dryer. This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University.  相似文献   

8.
C. G. J. Baker 《Drying Technology》2013,31(7-8):1533-1555
ABSTRACT

Previous work has shown that it is possible to predict the size of a continuous welt-mixed fluidized bed dryer from batch drying curve measurements. This approach has been extended in the present study to include energy consumption calculations. A computer code was written to simulate the performance of the dryer and to determine its specific energy consumption Es. Starting in this case with an isothermal bed batch drying curve, the program first calculates the mean solids residence time required under specified operating conditions. Mass and energy balances are then used to calculate the heat duty and Es. The bed temperature was found to have a significant effect on specific energy consumption in all cases. However, the influences of air flowrate and humidity, and of solids loading, were shown to depend on the solids drying characteristics.  相似文献   

9.
Empty fruit bunch (EFB) is one of the solid wastes from crude palm oil mills and has the lowest value for utilization compared to other solid wastes. To achieve an efficient utilization of EFB, drying is considered the first crucial process due to the high moisture content of EFB. In this study, EFB drying based on exergy recovery is proposed to achieve high energy efficiency. A fluidized bed is adopted as the main dryer. The proposed model is evaluated in terms of energy efficiency, especially regarding the influence of target moisture content and fluidization velocity. Up to 92% of the energy involved in the drying process can be recirculated. The total energy consumption for drying decreases as the target moisture content decreases, though there is no significant impact of fluidization velocity to total energy consumption. In addition, the required total length of the heat transfer tubes immersed inside the fluidized bed dryer is calculated because it relates to fluidization performance and economic issues. Lower target moisture content results in a longer heat transfer tube, and higher fluidization velocity leads to a shorter heat transfer tube.  相似文献   

10.
A general mathematical model of heat and mass transfer was developed to simulate the microwave-assisted fluidized bed drying of bulk grain. The model was solved using the well-known Runge-Kutta-Gill method. The model is capable of predicting the moisture content of soybean as well as the drying air parameters (i.e., drying air temperature and moisture content) during drying. The values of mean relative deviation (MRD) were less than 8 and 10% for prediction of grain moisture content and outlet air parameters, respectively, which reflects an acceptable accuracy. In comparison with conventional fluidized bed drying of soybean, microwave-assisted fluidized bed drying led to 83.39–98.07% savings in drying time and 82.07–95.22% savings in specific energy consumption when reducing soybean moisture content from 18.32 to 12% (db).  相似文献   

11.
In this study, a model for a plug-flow fluidized bed dryer under steady-state conditions was presented. The model was based on differential equations; thus the bed of the dryer was divided horizontally and vertically into major and minor control volumes, respectively. Each control volume was composed of two thermodynamic systems: solid and gas. The mass and energy balances of the particles in the major control volume based on the axial dispersion were developed to derive the axial profiles of solid moisture content and temperature. To derive the variation of gas humidity and temperature along the bed height and hence the axial profiles of outlet gas humidity and temperature, the mass and energy balances in the gas over the minor control volume, considering the plug flow of gas through the bed, were developed. The model was validated by comparing the simulation results with the experimental data obtained by drying the long-grain rough rice under steady-state conditions in a laboratory-scale, plug-flow fluidized bed dryer. A very satisfactory agreement between the simulation and the experimental data of solid moisture content, solid temperature, and outlet gas humidity and temperature was achieved. Also, the effects of inlet gas temperature, weir height, and inlet dry solid mass flow rate on the simulated axial profiles of solid moisture content and temperature, humidity difference between inlet and outlet gas, and outlet gas temperature were investigated.  相似文献   

12.
The drying behavior of moist spherical particles in a microwave-assisted fluidized bed dryer was simulated. The two-fluid Eulerian model incorporating the kinetic theory of granular flow was applied to simulate the gas–solid flow. The simulations were carried out using the commercial computational fluid dynamics (CFD) package Fluent 6.3.26. The effects of different levels of microwave power densities as well as initial gas temperature on the prediction of solids moisture content, gas temperature, and gas absolute humidity were investigated. The effect of microwaves was incorporated into calculations using a concatenated user-defined function (UDF). The simulation results were compared with experimental data obtained from drying of soybeans in a pilot-scale microwave-assisted fluidized bed dryer and reasonable agreement was found. The mean relative deviation for prediction of solids moisture content, gas temperature, and gas absolute humidity were less than 3, 10, and 5%, respectively. Further work is needed to validate the proposed model for large-scale plants.  相似文献   

13.
In a previous study, a unified approach to the calculation of the size and energy consumption of well-mixed fluidized bed dryers was developed. A computer code was written and a parametric study undertaken to determine the effects of the principal operating variables. The results were shown to depend on the form of the drying kinetics. The present paper describes the formulation of an analytical model of a well-mixed fluidized bed dryer, which applies for materials that exhibit linear falling-rate drying. These materials are typified by small hygroscopic particles, which are frequently dried in such equipment. Equations are presented that enable the drying time, specific energy consumption, heater duty and bed area to be calculated. The predictions of these equations agreed well with previously published experimental findings and with the results of computer simulations for a typical solid (ion exchange resin) exhibiting the required drying characteristics.  相似文献   

14.
方黄峰  刘瑶瑶  张文彪 《化工学报》2020,71(z1):307-314
生物质作为一种储量丰富、环境友好且易于获取的可再生能源,日渐成为能源研究利用领域的热点。生物质湿度是影响生物质利用效率的关键因素,因此干燥是生物质利用之前的必要步骤。流化床由于其良好的传热传质特性,在干燥过程中得到了广泛的应用。为了实时监测生物质颗粒的干燥过程,利用弧形静电传感器阵列,结合用于时间序列建模的长短期记忆(LSTM)神经网络,实现了流化床干燥器内生物质颗粒湿度的预测。在实验室规模的流化床干燥器上进行了多工况实验获取训练和测试数据,通过模型参数优化确定了LSTM模型。通过与标准循环神经网络(RNN)模型的预测结果的对比表明,LSTM神经网络模型的平均相对误差较小,能够较为准确地预测流化床干燥器内生物质颗粒的湿度。  相似文献   

15.
Abstract

In a previous study, a unified approach to the calculation of the size and energy consumption of well-mixed fluidized bed dryers was developed. A computer code was written and a parametric study undertaken to determine the effects of the principal operating variables. The results were shown to depend on the form of the drying kinetics. The present paper describes the formulation of an analytical model of a well-mixed fluidized bed dryer, which applies for materials that exhibit linear falling-rate drying. These materials are typified by small hygroscopic particles, which are frequently dried in such equipment. Equations are presented that enable the drying time, specific energy consumption, heater duty and bed area to be calculated. The predictions of these equations agreed well with previously published experimental findings and with the results of computer simulations for a typical solid (ion exchange resin) exhibiting the required drying characteristics.  相似文献   

16.
Continuous flow osmotic drying permits a better exchange of moisture and solids between the food particle and osmotic solution than the batch process. Osmotic drying has been well studied by several researchers mostly in the batch mode. Microwave heating has been traditionally recognized to provide rapid heating conditions. Its role in the finish drying of food products has also been recognized. In this study, the effects of process temperature, solution concentration on moisture loss (ML), solids gain (SG), and mass transport coefficients (km and ks) were evaluated and compared under microwave, assisted osmotic dehydration (MWOD) versus continuous flow osmotic dehydration (CFOD). Apple cylinders (2 cm diameter, 2 cm height) were subjected to continuous flow osmotic solution at different concentrations (30, 40, 50, and 60°Brix sucrose) and temperatures (40, 50, and 60°C). Similar treatments were also given with samples subjected to microwave heating. Results obtained showed that solids gain by the samples was always lower when carried out under microwave heating, while the moisture loss was increased. The greater moisture loss strongly counteracted solids gain in MWOD and thus the overall ratio of ML/SG was higher in MWOD than in CFOD.  相似文献   

17.
For the investigation of the drying process of a pharmaceutical fermentation waste and for determining specific heat and mass transfer coefficients an agitated contact-convective heated dryer was constructed. This dryer is also suitable for drying of other granular solids with high moisture content. Hence we investigated the drying of a by-product from bio-ethanol production, as well. The pilot-plant agitated dryer makes possible continuous measurement and data-acquisition. Data-acquisition of heated wall temperature, inlet and outlet air temperatures and humidity, mass reduction of the material makes possible the determination of transfer coefficients by the heat and mass balance of the dryer. The measured heat and mass transfer coefficients serve as proper input parameters for the simulation calculations.  相似文献   

18.
The residence times of solids flowing through a fluidized bed dryer exhibit dispersion about the mean. In this paper, expressions for the probability density functions of solids moisture content in the various stages of a multi-stage dryer are derived. A simple recurrence relationship for the moments of the distribution is also presented. The analysis is applied to the drying of cereal grains, and it is shown that the degree of drying increases with the number of stages in the dryer. Probability density functions of the moisture content are presented.  相似文献   

19.
The residence times of solids flowing through a fluidized bed dryer exhibit dispersion about the mean. In this paper, expressions for the probability density functions of solids moisture content in the various stages of a multi-stage dryer are derived. A simple recurrence relationship for the moments of the distribution is also presented. The analysis is applied to the drying of cereal grains, and it is shown that the degree of drying increases with the number of stages in the dryer. Probability density functions of the moisture content are presented.  相似文献   

20.
Perusing the hydrodynamic changes of fluidized bed dryer is important for online monitoring of the drying process. The present study investigates the drying process of wetted rice particles. Air at ambient conditions with superficial velocity of 1 ms?1 was used for drying. Absolute pressure fluctuations were measured to monitor the fluidization status of the dryer. Fast Fourier transform, discrete wavelet transform, and statistical analyses of detailed signals were employed to evaluate the fluidization quality in the bubbling regime. Pressure fluctuations were decomposed by the wavelet transform to 10 subsignals. It was shown that the energy of subsignals is more sensitive to moisture changes than other studied parameters. Specifically, the energy of the subsignals corresponding to the macrostructure (large bubbles) can be used for determining the moisture content of the solids during the drying process. This method can be used for online monitoring of drying processes in a wide range of processing conditions in fluidized beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号