首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Columns were fabricated in silicon substrates by deep reactive-ion etching. The channels were sealed with a glass wafer anodically bonded to the silicon surface. Heaters and temperature sensors were fabricated on the back side of each column chip. A microcontroller-based temperature controller was used with a PC for temperature programming. Temperature programming, with channel lengths of 3.0 and 0.25 m, is described. The 3.0-m-long channel was fabricated on a 3.2 cmx3.2 cm chip. Four columns were fabricated on a standard 4-in. silicon wafer. The 0.25-m-long channel was fabricated on a 1.1 cmx1.1 cm chip, and approximately 40 columns could be fabricated on a 4-in. wafer. All columns were coated with a nonpolar poly(dimethylsiloxanes) stationary phase. A static coating procedure was employed. The 3.0-m-long column generated about 12000 theoretical plates, and the 0.25-m-long channel generated about 1000 plates at optimal carrier gas velocity. Linear temperature ramps as high as 1000 degrees C/min when temperature programmed from 30 to 200 degrees C were obtained with the shorter column. With the 0.25-m-long column, normal alkanes from n-C5 through n-C15 were eluted in less than 12 s using a temperature ramp rate of 1000 degrees C/min. Temperature uniformity over the column chip surface was measured with infrared imaging. A variation of about 2 degrees C was obtained for the 3.0-m-long channel. Retention time reproducibility with temperature programming typically ranged from +/-0.15% to +/-1.5%. Design of the columns and the temperature controller are discussed. Performance data are presented for the different columns lengths.  相似文献   

2.
The design, fabrication, and performance of gas chromatography columns etched in silicon substrates are described. Deep reactive-ion etching formed the 3-m-long, 150-microm-wide, 240-microm-deep rectangular cross section channels. A glass cover plate was anodically bonded to the remaining surface of the substrate forming the gastight channel. For some of the columns, the silicon channels were oxidized before the channels were sealed with the glass plates. Fused-silica capillary connecting tubes were sealed into ports on the edge of the 3.2-cm x 3.2-cm substrate chips. Dynamic coating was used to deposit a film of nonpolar dimethyl polysiloxane or moderately polar trifluoropropylmethyl polysiloxane stationary phase. The columns were evaluated in a conventional benchtop GC instrument with split injection and flame ionization detection. Column efficiency was evaluated by the use of plots of height equivalent to a theoretical plate versus average carrier gas velocity using both hydrogen and air as carrier gases. The number of theoretical plates measured at the average carrier gas velocity giving the minimum plate height ranged from 4600 to 8200 plates for the dimethyl polysiloxane columns and from 3500 to 5500 plates for the trifluoropropylmethyl polysiloxane columns. Minimum plate height was significantly smaller with air as carrier gas. For the nonpolar phase, the nonoxidized surface gave approximately 1500 plates more than the oxidized surface for both carrier gases. For the polar phase, the oxidized surface gave approximately 200 plates more than the nonoxidized surface. Isothermal chromatograms of a 20-component multifunctional mixture and temperature-programmed chromatograms of a normal alkane mixture are presented.  相似文献   

3.
This article examines and empirically realizes the regenerative heating of air in the combustion of a gaseous fuel in radiant tube-heaters with cascade fluidization and counter-current recirculation of an intermediate dispersed heat carrier. Such an arrangement is found to be considerably more efficient than recuperative heating.Institute of Heat and Mass Transfer, Academy of Sciences of Belarus, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 62, No. 4, pp. 585–590, April, 1992.  相似文献   

4.
Grall AJ  Sacks RD 《Analytical chemistry》1999,71(22):5199-5205
The development of lightweight, portable GC instrumentation is handicapped by the need for compressed carrier gas to drive the separation. The use of air as carrier gas eliminates the need for compressed gas tanks. If a vacuum pump is used to pull carrier gas and injected samples through the column, atmospheric pressure air can be used as carrier gas. Vacuum outlet operation also improves performance for high-speed separations by reducing detector dead time and by shifting optimal carrier gas velocity to higher values. Under vacuum outlet conditions using atmospheric pressure air as carrier gas, a 6-m-long, 0.25-mm-i.d. capillary column can generate approximately 12,500 theoretical plates, and a 12-m-long column can generate approximately 44,000 plates but with a 3-4-fold increase in separation time. The principal issues in column selection for high-speed GC with air as a carrier gas are efficiency and stability. Several bonded and nonbonded stationary phases were evaluated for use with air as carrier gas in the analysis of volatile organic compounds of interest in airmonitoring applications. These include dimethylpolysiloxane, 50% phenyl-50% methyl polysiloxane, 50% cycanopropylphenyl-50% methyl polysiloxane, trifluoropropyl polysiloxane, poly(ethylene glycol), and dicyanoallyl polysiloxane (nonbonded). The dimethyl polysiloxane and the trifluoropropyl polysiloxane columns showed good efficiency and no significant deterioration after 5 days of continuous operation with air as carrier gas. The 50% phenyl-50% methyl polysiloxane and the 50% cycanopropylphenyl-50% methyl polysiloxane columns showed poorer efficiency, and the poly(ethylene glycol) and dicyanoallyl polysiloxane columns showed excessive deterioration in air.  相似文献   

5.
Vacuum-outlet GC with atmospheric-pressure air as the carrier gas is implemented at outlet pressures up to 0.8 atm using a low-dead-volume polymer-coated surface acoustic wave (SAW) detector. Increases in the system outlet pressure from 0.1 to 0.8 atm lead to proportional increases in detector sensitivity and significant increases in column efficiency. The latter effect arises from the fact that optimal carrier gas velocities are lower in air than in more conventional carrier gases such as helium or hydrogen due to the smaller binary diffusion coefficients of vapors in air. A 12-m-long, 0.25-mm-i.d. tandem column ensemble consisting of 4.5-m dimethyl polysiloxane and 7.5-m trifluoropropylmethyl polysiloxane operated at an outlet pressure of 0.5 atm provides up to 4 x 10(4) theoretical plates and a peak capacity of 65 (resolution, 1.5) for a 3-min isothermal analysis. At 30 degrees C, mixtures of vapors ranging in vapor pressure from 8.6 to 76 Torr are separated in this time frame. The SAW detector cell has an internal volume of < 2 microL, which allows the use of higher column outlet pressures with minimal dead time. The sensor response is linear with solute mass over at least 2-3 decades and provides detection limits of 20-50 ng for the vapors tested. The combination of atmospheric-pressure air as carrier gas, modest operating pressures, and SAW sensor detection is well-suited for field instrumentation since it eliminates the need for support gases, permits smaller, low-power pumps to be used, and provides sensitivity to a wide range of vapor analytes.  相似文献   

6.
For the determination of main and minor components in silicon-based ceramic powders, a decomposition by a combustion with elemental fluorine and separation of the volatile fluorination products by a carrier-gas distillation with a subsequent detection by quadrupole mass spectrometry is described. The necessity and success of the separation step is demonstrated for the determination of boron as a minor constituent in SiC, where the spectral interferences of silicon on the boron signals are decreased considerably. The method developed is shown to be directly applicable to determination of silicon in Si3N4, SiC, and SiO2. The determination of nitrogen in Si3N4 requires additional effort, to separate nitrogen from the excess of fluorine. For the determination of boron, a complete mobilization of BF3 is assured by the presence of an adequate amount of GeF4. Analysis results obtained with different types of calibration show a precision of 30 microg for boron at the milligram-per-gram level and a precision between 0.5 and 2% (m/m) for the main components, silicon and nitrogen. Within these standard deviations, the results agree well with the values expected from the stoichiometry, with the results for silicon and boron obtained by wet chemical decomposition and slurry techniques in combination with ICP-OES and with the results for nitrogen obtained by carrier gas heat extraction.  相似文献   

7.
Transient photocurrent spectroscopy (TPC) yields the energetic distribution of localised states in disordered semiconductors from an analysis of the decay of photocurrent with time following a short laser pulse. By comparing results at different laser excitation wavelengths, and hence absorption depths, information on spatial non-uniformities may also be inferred. Here we investigate the use of TPC as a spatial probe with reference to two thin-film silicon systems; amorphous silicon subjected to various light-induced degradation regimes, and microcrystalline silicon grown on a range of ‘seed’ layers. Computer simulation is used to support experimental findings, and to identify sensitivity and resolution limitations.  相似文献   

8.
He-Ping Li  Xi Chen 《Thin solid films》2001,390(1-2):175-180
In the present paper, three-dimensional modeling results are presented concerning the turbulent thermal plasma jet with transversely injected carrier gas and metal particles at atmospheric pressure. The standard K− model is employed for the numerical simulation of the turbulent plasma flow in coupling with the variable-property continuity, momentum and energy equations. For predicting the motion of the injected particles in the turbulent flow field, an improved particle stochastic-trajectory model is adopted in the calculation. The heating histories of the injected particles are also calculated in their moving processes. The modeling results show that including the effect of carrier gas on jet and particle behavior is very important. The plasma jet is deflected from its geometrical axis due to the transverse injection of carrier gas, and the particle trajectories are also appreciably changed by the carrier gas injection. The particles disperse around their average trajectories in the turbulent flow field.  相似文献   

9.
A tandem ensemble of two 4.5-m-long x 0.25-mm-i.d. capillary columns with the first using a 0.50-microm film of nonpolar dimethyl polysiloxane and the second using a 0.25-microm film of polar trifluoropropylmethyl polysiloxane is operated with atmospheric pressure air as the carrier gas and an outlet pressure of 50.5 kPa established using a small vacuum pump. A thicker stationary-phase film is used in the first column to increase retention for very volatile compounds. This significantly increases the resolution of these compounds. The thicker film in the first (nonpolar) column decreases the polarity of the tandem column ensemble and, thus, changes its selectivity. A low-dead-volume valve, connected between the column junction point and a source of atmospheric pressure air, is used to obtain pulsed modulation of the carrier gas flow through the column ensemble. When the valve is open, the ensemble inlet pressure and the junction-point pressure are nearly the same, and carrier gas flow nearly stops in the first column, and flow in the second column increases. Enhanced resolution of a component pair that is separated by the first column but coelutes from the column ensemble can be obtained if the valve is opened for a few seconds after one of the components has crossed the junction and is in the second column, but the other component is still in the first column. A sequence of appropriately timed pulses is used to obtain enhanced resolution of several pairs of components that coelute from the column ensemble. These methods enabled the complete separation of an 18-component vapor mixture of common solvents in air in 3.5 min.  相似文献   

10.
The motion of microparticles interacting with a free molecular gas flow escaping from an orifice has been numerically simulated with allowance for asymptotic properties of the flow. Specific features of collective properties of the ensemble of microparticles and the evolution of uncertainty in the initial conditions of a separate particle are considered.  相似文献   

11.
The very simple coupling of a standard, packed-column gas chromatograph with a microcantilever array (MCA) is demonstrated for enhanced selectivity and potential analyte identification in the analysis of volatile organic compounds (VOCs). The cantilevers in MCAs are differentially coated on one side with responsive phases (RPs) and produce bending responses of the cantilevers due to analyte-induced surface stresses. Generally, individual components are difficult to elucidate when introduced to MCA systems as mixtures, although pattern recognition techniques are helpful in identifying single components, binary mixtures, or composite responses of distinct mixtures (e.g., fragrances). In the present work, simple test VOC mixtures composed of acetone, ethanol, and trichloroethylene (TCE) in pentane and methanol and acetonitrile in pentane are first separated using a standard gas chromatograph and then introduced into a MCA flow cell. Significant amounts of response diversity to the analytes in the mixtures are demonstrated across the RP-coated cantilevers of the array. Principal component analysis is used to demonstrate that only three components of a four-component VOC mixture could be identified without mixture separation. Calibration studies are performed, demonstrating a good linear response over 2 orders of magnitude for each component in the primary study mixture. Studies of operational parameters including column temperature, column flow rate, and array cell temperature are conducted. Reproducibility studies of VOC peak areas and peak heights are also carried out showing RSDs of less than 4 and 3%, respectively, for intra-assay studies. Of practical significance is the facile manner by which the hyphenation of a mature separation technique and the burgeoning sensing approach is accomplished, and the potential to use pattern recognition techniques with MCAs as a new type of detector for chromatography with analyte-identifying capabilities.  相似文献   

12.
A fritless electroosmotic pump with reduced pH dependence has been fabricated on a glass microchip and its performance characterized. The chip design consists of two 500-microm channels, one packed with anion exchange beads and the other packed with cation exchange beads, which produce convergent electroosmotic flow streams. The electroosmotically pumped solution flows away from the intersection of the two pumping channels through a field-free channel. This simple design allows for the production of a fritless electroosmotic pump and easy replacement of the ion exchange beads whose charged surfaces generate the flow. The pump was found to produce volumetric flow rates of up to 2 microL/min for an applied voltage of 3 kV at a pH of 6.8. Moreover, the electroosmotic pump can generate high flow rates over an extended pH range of at least 2-12, a significant advantage over previously fabricated electroosmotic pumps, which typically have a more limited range in which they can achieve high flow rates.  相似文献   

13.
14.
This paper reports the use of hot-wire chemical vapour deposited (HWCVD) Silicon nitride as a passivation layer for Organic Field Effect Transistors (OFETs). Firstly, the degradation study of the OFETs is done with time. A thin (10-20 nm) layer of silicon nitride is deposited on the OFETs, at a low temperature (< 90 °C) by HWCVD process, to passivate them from the ambient. Our results show that this technique is very effective in improving the stability of the organic semiconductors (Poly-3-hexyl thiophene (P3HT) is used as a test case in this study). This HWCVD deposited nitride can also be used as a gate dielectric material for the study of OFETs because of its higher dielectric constant and significantly less hydrogen content.  相似文献   

15.
Pure and silicon-coated metal copper nano to submicron-sized powders were prepared by gas evaporation and condensation. This powder was synthesized by using an industrial electron accelerator, ELV-6, with Ar as the carrier gas. Vapour from the liquefied metal surface was transferred to the cold zone by the carrier gas and precipitated as spherical Cu metal and Si/Cu composite powders. The mean diameter of the resulting powder was 100–200 nm.  相似文献   

16.
The possibility of using single resistive n-type InP semiconductor gas sensors to perform accurate measurements of ozone or nitrogen dioxide concentration in air comes up against their low sensitivity and the inability to discriminate between the influence of each gas on the sensors without any exterior apparatus. To improve these two fundamental aspects of gas sensors, the sensitive n-InP layers have been included in more complex devices, called pseudo-Schottky diodes. Made by successive evaporation of metallic thin layers on p-InP substrates, their Schottky metallization schemes (Pd/Ge/Pd) satisfy a double objective: the creation of the necessary n-InP gas sensitive layer by activation of Ge dopants and the ozone catalytic conversion by palladium layers. Comparisons between the sensing performances of the two gas sensors (resistive and Schottky diode-type ones) show that sensitivity of the laters is largely higher than that of single resistive gas sensors. On the other hand, a good selectivity toward ozone is achieved with Pd/Ge/Pd/p-InP gas sensors, resulting from different reaction kinetics between O/sub 3/ or NO/sub 2/ and the sensitive layer. These differences can be attributed to the palladium metallization catalytic activity.  相似文献   

17.
The effect of rare earth addition in the carrier gas on plasma nitrocarburizing of 17-4PH steel was studied. The microstructure and crystallographically of the phases in the surface layer as well as surface morphology of the nitrocarburized specimens were characterized by optical microscope, X-ray diffraction and scanning tunneling microscope, respectively. The hardness of the surface layer was measured by using a Vickers hardness test. The results show that the incorporation of rare earth elements in the carrier gas can increase the nitrocarburized layer thickness up to 55%, change the phase proportion in the nitrocarburized layer, refine the nitrides in surface layer, and increase the layer hardness above 100HV. The higher surface hardening effect after rare earth addition is caused by improvement in microstructure and change in the phase proportion of the nitrocarburized layer.  相似文献   

18.
《Composites Part A》2007,38(2):602-608
Electromagnetic wave absorbing properties of SiC-foams and their composites with SiO2 as matrix are presented, including theory, numerical analysis, and results/discussion. The reflection coefficients of various SiC-foams and their composites with various dielectric parameters are calculated by numerical simulation. When SiC conductivities are in the range of 2–3 S m−1 in the case of SiC-foams, or 2–5 S m−1 in the case of composites, the minimum reflection coefficients can be obtained in the range of X-band of 8.2–12.4 GHz. These materials are light weight, heat-resistant, and good impedance match with the free space, and therefore, they are a good candidate as a wide-range frequency absorbent medium.  相似文献   

19.
20.
A procedure is shown for the transient analysis of an air conditioner with plane-parallel packing and forward flow, when the dynamic performance is described by transcendental transfer functions.Translalted from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 4, pp. 693–701, April, 1973.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号