首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
氨化预处理对玉米秸秆酶解产糖的影响   总被引:1,自引:0,他引:1  
为综合利用玉米秸秆,加快纤维素酶降解玉米秸秆。本文以玉米秸秆为原料,还原糖产量为主要指标,通过氨化预处理后酶解玉米秸秆,采用DNS法测定还原糖产量,并考察氨化剂种类、浓度、固含量和氨化时间对玉米秸秆酶解产糖的影响。结果表明,在以碳酸铵为氨化剂,氨化剂浓度为20%,固含量为50%,氨化时间为11 d,在此条件下,还原糖产量最高为314.18 mg/mL,与直接酶解秸秆相比提高51.80%。扫描电镜结果显示,米秸秆经碳酸铵氨化预处理后,木质素和纤维素的结构发生变化,表面结构变得粗糙疏松,纤维素暴露,更有利于纤维素酶的作用。此外,FTIR发现,氨化处理后玉米秸秆在2920和1650 cm-1处的吸收峰减弱,其峰值降低一定程度上代表木质素结构被破坏。总体来看,玉米秸秆经过碳酸铵氨化预处理后,更有利于酶解玉米秸秆。  相似文献   

2.
为提高小麦作物秸秆酶解效率,对小麦秸秆进行酸性蛋白酶酶解预处理,然后进行纤维素酶酶解。以最终得糖率为指标考察酸性蛋白酶预处理对纤维素酶降解小麦秸秆的影响。采用单因素和正交实验对酸性蛋白酶酶解预处理条件进行优化,结果表明预处理小麦秸秆最优条件为:反应温度45℃,反应时间4h,加酶量0.5%(酶∶原料),固液比1∶12(g/mL),pH为3。经预处理条件优化后,纤维素酶解率达73.12%。  相似文献   

3.
为促进生物炼制产业发展,提高玉米秸秆酶解糖化效率,运用Box-Behnken试验设计优化预处理工艺,研究硫酸质量分数、反应时间、反应温度和固液比四个因素对半纤维素水解率的影响规律,并结合扫描电子显微镜、红外光谱仪、X-射线衍射仪分析玉米秸秆微观形貌、结构等指标。结果表明:玉米秸秆预处理最佳工艺为反应温度100℃、硫酸质量分数1.2%、反应时间120 min、固液比1∶9(g∶mL),在此条件下半纤维素水解率为84.93%,木质素脱除率为46.15%,预处理水解液还原糖质量浓度为2.04 g/100mL,木糖产率为74.22%,87.89%纤维素保留在固体部分,经72 h酶解反应酶解率达到85.79%,未处理玉米秸秆酶解率仅为32.25%。  相似文献   

4.
纤维素酶用量和底物浓度对玉米秸秆酶解的影响   总被引:3,自引:0,他引:3  
首先采用碱液湿磨法对玉米秸秆进行预处理,然后对预处理玉米秸秆进行酶解,调查了纤维素酶用量、底物浓度对还原糖收率和反应速度的影响,同时讨论了木质素对纤维素酶解的抑制机理。纤维素酶用量在1.5~30FPU/g的范围内变化,底物浓度在10~40g/L的范围内变化。通过对预处理玉米秸秆酶解的响应面分析,得到了还原糖收率与纤维素酶用量、底物浓度之间的关系式。实验结果表明,纤维素酶用量越大,酶解反应速率随底物浓度的增加幅度也越大。木质素对纤维素酶的吸附会造成纤维素酶的失活,从而导致酶解反应速率和还原糖收率的降低。  相似文献   

5.
本研究通过碱(NaOH)和酸(HCl)预处理以提取玉米秸秆中的还原糖,采用扫描电子显微镜观察玉米秸秆预处理前后的形态变化,探究了预处理前后玉米秸秆的制浆性能及纸张强度性能。结果表明,在150℃,NaOH和HCl用量分别为6%,预处理时间120 min条件下,玉米秸秆的酸、碱抽提的还原糖(Trs)得率分别为34.2%和14.5%。其中,酸预处理玉米秸秆在碱用量为12%蒸煮时,纸浆得率最高,为48.1%。此外,酸和碱预处理后纸张撕裂指数分别降低了18%和13%,抗张指数也呈现下降趋势,分别降低了28%和16%,耐破指数分别降低了60%和41%。因此,预处理过程中半纤维素的损失会导致纸张强度性能降低。  相似文献   

6.
以硬毛粗盖孔菌(Funalia trogii)为研究对象,比较其在不同预处理时间的产酶特征、预处理前后玉米秸秆酶解产糖量及其组分变化。结果表明,硬毛粗盖孔菌对木质素的降解以漆酶和锰过氧化物酶的协同作用为主导,漆酶和锰过氧化物酶活最高分别为341 IU/g和33 IU/g。经生物预处理14 d后的玉米秸秆酶解产糖量可达到350.74 mg/g秸秆,较原料提升184%。玉米秸秆组分的变化与其酶解增效密切相关,F. trogii预处理14 d后木质素和半纤维素含量分别降低了33.99%和36.61%,而纤维素仅降解8.77%,木质素和半纤维素的选择性降解,可显著降低玉米秸秆酶解抗性屏障,提升其酶解糖化效率。硬毛粗盖孔菌预处理玉米秸秆可实现木质纤维素的高效转化,缩短预处理时间,降低处理成本。  相似文献   

7.
为了降低纤维乙醇生产过程中纤维素酶成本,以高产纤维素酶里氏木霉TGC521为生产菌株,玉米秸秆汽爆料为碳源,对纤维素酶的发酵工艺进行优化研究。在单因素试验基础上,利用Box-Behnken设计和响应面方法对培养基配方进行优化,并研究了溶氧、还原糖等工艺参数对发酵产酶的影响以及所产纤维素酶的应用。结果表明,玉米秸秆汽爆料对产酶影响最大,其次为玉米浆。优化培养基配方为:玉米秸秆汽爆料38.6 g/L、(NH42SO4 4.8 g/L、玉米浆29.7 g/L、麸皮5.3 g/L、KH2PO4 1.0 g/L、MgSO4 0.5 g/L。在溶氧浓度20%~30%、还原糖含量2.0~3.0 g/L、发酵时间144 h条件下,纤维素酶活力达到39.0 U/mL。进一步利用生产的纤维素酶进行原位糖化,低酶载量条件下纤维素转化率达85%以上。  相似文献   

8.
玉米秸秆发酵燃料乙醇预处理条件的优化   总被引:3,自引:0,他引:3  
以玉米秸秆为原料,利用不同浓度的稀硫酸在均相反应器中对其进行高温水解,获取可发酵性还原糖。结果表明,以0.8%(w/w)的稀硫酸,在150℃,保温1h的预处理条件下,水解还原糖得率达57.3%。对处理过的玉米秸秆进行X射线衍射分析,发现其结晶度提高。该条件的处理液经纤维素酶与木聚糖酶酶解,还原糖得率可达92%以上。  相似文献   

9.
《食品与发酵工业》2014,(11):109-115
以玉米秸秆为原料,经酸碱蒸煮处理后,再经纤维素复合酶酶解,利用酶解液发酵产γ-聚谷氨酸(γ-PGA)。通过单因素和正交试验,研究了用1.0%H2SO4、10.0%NH3OH、水三种预处理方法处理玉米秸秆,以含糖量为指标考察各因素对酶解效果的影响。结果表明,3种预处理方法酶解玉米秸秆的最佳条件基本一致:加酶量为35FPIU/g,底物浓度1∶15,酶解时间96 h。玉米秸秆酶解液与玉米糖化液混合发酵生产γ-PGA的最佳配比为7∶3,与玉米秸秆酶解液单独发酵相比,混合发酵产γ-PGA产量提高了95.12%。  相似文献   

10.
对碱性亚硫酸钠法预处理玉米秸秆的工艺进行了优化,确定了最佳的预处理条件为用碱量12%,液固比为6∶1,最高温度140℃,保温时间20min。在该预处理条件下的葡聚糖的酶水解效率为85.38%,木聚糖的酶水解效率为70.36%,总糖得率为74.73%,相比相同总碱量氢氧化钠预处理秸秆酶水解总糖得率67.67%,提高10.43%。此外,在此最佳预处理条件下处理的玉米秸秆,使用PFI继续打浆1500转后,葡聚糖的酶水解效率为89.74%,木聚糖的酶水解效率为74.06%,总糖得率为78.58%,相比相同总碱量氢氧化钠预处理秸秆后再PFI处理1500转的总糖得率68.90%,提高14.05%。  相似文献   

11.
采用正交实验确定玉米秆髓乙醇法蒸煮的最佳条件,并将在最佳条件下蒸煮得到的玉米秆髓浆与OCC纸浆进行配抄,通过检测纸张的物理强度性能确定最佳配比。结果表明,玉米秆髓乙醇法蒸煮的最佳条件为:蒸煮最高温度185℃、保温时间90 min、液比1∶25、乙醇体积分数60%;玉米秆髓浆的较优加入量为20%~25%,与不含玉米秆髓浆的纸张相比,当玉米秆髓浆配比为25%时,成纸的抗张指数、环压指数和耐破指数分别提高了77.7%、47.1%和26.7%。  相似文献   

12.
目的 研究猪血红蛋白的酶解工艺.方法 用组合酶Ⅰ(蛋白酶F与蛋白酶P)和组合酶Ⅱ(蛋白酶F与蛋白酶N)同步酶解猪血红蛋白.结果 确定最佳工艺参数,组合酶Ⅰ的最佳酶解条件为:酶添加量0.2%,温度50℃,料水比1∶1.25,pH 7.5,水解时间20 h;组合酶Ⅱ的最佳酶解条件为:酶添加量0.24%,温度50℃,料水比1:1.75,pH 8.0,酶解时间20h.此工艺条件下,组合酶Ⅰ和组合酶Ⅱ三氯乙酸可溶性氮含量(TCA-SN指数)分别为71.72%和87.82%,两种组合酶的蛋白质回收率均达90%.结论 组合酶Ⅱ较适于工业生产.  相似文献   

13.
徐永建  敬玲梅 《中华纸业》2010,31(24):20-24
研究了玉米秸秆制备微晶纤维素的预水解乙醇法制浆工艺,对预水解的保温温度、保温时间以及加酸量,乙醇法制浆的保温时间及加酸量进行了研究。研究结果表明:预水解的最佳工艺为,液比1:6,升温时间30min,保温时间120min,水解温度160℃,加酸量1%;乙醇法制浆的最佳工艺为,乙醇溶液(配比为乙醇:水=6:4),液比1:6,60min内升温达160℃后装锅,继续升温到达最高温度195℃,乙酸用量8%,保温时间60min。  相似文献   

14.
徐静  张井  李燕  李来好  薛长湖 《食品科学》2009,30(22):221-225
以α- 氨基酸态氮含量为指标,在鳀鱼蒸煮液单因素酶解研究的基础上,采用二次回归正交旋转组合设计对其酶解工艺进行优化。建立酶解液中α- 氨基酸态氮含量与蛋白酶用量、酶解温度及酶解初始pH 值3 个试验因素的正交回归模型方程,根据回归模型进行主效应分析,通过频率分析法得到酶解最佳工艺条件:蛋白酶用量0.56%(m/m),酶解温度50℃,酶解初始pH7.12,最佳条件下酶解液中α- 氨基酸态氮的含量为0.49g/100ml。  相似文献   

15.
在麦草NaOH-AQ法Al2O3留硅的基础上,实验采用了均匀设计及偏最小二乘法,研究了不同氧化物协同Al2O3留硅蒸煮工艺。得到的最佳工艺条件为:NaOH14.7%,Al2O30.1%,MgO0.1%,CaO3%,蒽醌0.05%;在160℃下,保温30min,液比1∶5。该实验条件下浆得率47.8%,KMnO4值9.01,纸浆Si O2含量3.02%,黑液Si O2含量0.85g/L,纸浆灰分10.39%;与NaOH-AQ法比较纸浆Si O2上升1.12点,灰分提高7.06百分点,有利于提高文化用纸的不透明度,黑液二氧化硅浓度下降约0.81百分点,黑液黏度降低,对黑液碱回收有利。实验结果表明不同氧化物协同氧化铝留硅作用效果明显。  相似文献   

16.
将燕麦粉用α-淀粉酶酶解,经高压微射流粉碎后进行喷雾干燥,得到速溶燕麦粉。首先研究了酶解工艺对燕麦浆感官品质的影响,其酶解最优工艺为:酶添加量42 U/g,酶解温度60℃,酶解时间30 min;其次在单因素试验基础上采用Box-Behnken中心组合设计了三因素三水平试验,分析各因素的显著性和交互作用,以燕麦粉产品得率为响应值,通过响应曲面优化喷雾干燥工艺,确定最佳工艺条件:样品浓度26%,喷雾温度94℃,喷雾速度8 r/min,该条件下燕麦粉的得率为41.18%,与理论值40.69%基本相符;最后采用高压微射流粉碎技术创新性地对工艺进一步优化,燕麦粉的产品得率明显提高,可达47.35%。将高压微射流技术用于燕麦粉的加工,得到的产品粒径小,稳定性好,得率高,具有较好的应用前景。  相似文献   

17.
利用稀碱液对玉米秆半纤维素进行预抽提,考察了半纤维素预提取对玉米秆蒸煮和漂白性质的影响,并比较了蒸煮后纸浆纤维表面超微结构的不同.相比未经预提取的对照实验,预先提取半纤维素能使未漂浆和漂白浆的白度提高5%~10%ISO,未漂浆卡伯值降低43.9%,未漂浆所抄纸张的撕裂指数提高了72.3%,而抗张指数和耐破指数分别下降6.5%和7.6%.应用原子力显微镜(AFM)分析纸浆纤维的表面发现,玉米秆经预提取半纤维素之后再蒸煮,所得纸浆表面沉积的有半纤维素和木素特征的物质消失,大量的纤维素微细纤维暴露出来,使纸浆的卡伯值降低、纸页撕裂指数增大.  相似文献   

18.
张晨  温欢  刘志伟 《食品科学》2009,30(23):356-360
目的:使用纤维素酶、果胶酶来部分降解糙米中的粗纤维和果胶物质,改善糙米的食用品质。方法:选取温度、酶用量和作用时间3 个因素,以糙米的加热吸水率、米汤固形物质量、米汤碘蓝值等为考察蒸煮品质指标,通过单因素和正交试验考察酶作用的最佳条件。结果:确定纤维素酶作用的最佳作用条件为:反应温度50℃、加酶量10ml、酶作用时间120min;果胶酶的最佳作用条件为:反应温度55℃、加酶量10ml、酶作用时间120min。结论:经纤维素酶和果胶酶处理后的糙米食用品质较处理前有明显改善,其中纤维素酶作用好于果胶酶,而两种酶共同作用没有明显叠加效果。  相似文献   

19.
李瑞瑞  李军  吴绘敏  徐峻 《中华纸业》2011,32(12):34-37
采用回归正交组合设计的方法,探讨了甲酸浓度、蒸煮温度、蒸煮时间、液比对蒸煮浆质量的影响,得出优化常压麦草甲酸法制浆工艺条件:甲酸浓度85%,蒸煮温度100℃,蒸煮时间180min,液比15:1,细浆得率最高,脱木素效果最好;并对蒸煮浆残余木素进行了红外谱图分析,分析了木素在甲酸蒸煮过程的结构变化。  相似文献   

20.
李凤  付时雨  李辉  谢君  詹怀宇 《中华纸业》2010,31(14):25-29
采用响应面分析法对漆酶介体体系(LMS)处理NaOH-AQ玉米秆浆的三个主要工艺参数(漆酶用量,介体HBT用量和处理时间)进行了优化研究,并考察了LMS预处理对后续漂白的影响。结果表明LMS处理NaOH-AQ玉米秆浆的最优工艺条件:漆酶用量27.7IU/g,HBT1%,处理时间4.2h。在此优化条件下,对比了有/无LMS预处理漂白浆的性质,结果表明:在达到相同白度(约74%ISO)时,有LMS预处理可以节省约83%的H2O2用量;在后续H2O2用量(2%)相同时,LMS预处理过的纸浆白度可提高10.44%ISO,卡伯值降低2,并保持了较好的强度性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号