首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
开展了硝酸体系中以肼为还原剂、铂黑为催化剂催化还原U(Ⅵ)的动力学研究。通过考察U(Ⅵ)浓度、肼浓度、酸度以及催化剂用量等条件对反应过程的影响,确定了反应的初始动力学速率方程为-dc(UO2+2)dt=kc0.44(UO2+2)c0.19(N2H+5)c-0.23(H+),在60 ℃、固液比rS/L=2.0 g/L时,速率常数k=2.6×10-3 (mol/L)0.6/min。研究了温度对反应速率的影响,结果表明,在20~75 ℃范围内,随着温度升高,反应速率加快,反应过程由动力学控制转变为扩散控制过程。对比了硝酸体系与高氯酸体系的反应动力学实验数据,发现相同条件下硝酸体系的反应速率明显低于高氯酸体系,并分析了其中的原因。  相似文献   

2.
高氯酸体系中肼为还原剂催化还原U(Ⅵ)的反应动力学   总被引:2,自引:0,他引:2  
开展了高氯酸体系中以肼为还原剂,铂黑为催化剂催化还原U(Ⅵ)的动力学研究。通过考察U(Ⅵ)浓度、肼浓度、酸度以及催化剂用量等条件对反应过程的影响,确定了该反应的初始动力学速率方程为-dc(UO22+)/dt=kc0.39(UO22+)c0.36(N2H5+)c-0.51(H+),在60℃、固液比0.002kg/L时,速率常数k=3.2×10-3(mol/L)0.76/min。研究了温度对反应速率的影响,结果表明,在20~75℃范围内,随着温度升高,反应速率加快,反应过程由化学反应控制转变为扩散控制过程。并在此基础上推测了可能的反应机理,认为肼在催化剂表面的吸附分解是整个反应的控制步骤。  相似文献   

3.
为优化硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)的工艺条件,确定此反应过程的控制步骤,有针对性地提高控制步骤的反应速率,以确定N2H4还原U(Ⅵ)制备U(Ⅳ)过程中的反应历程以及反应机理,通过实验研究确定了N2H4在Pt催化剂上的断键方式和分解机理。采用气相色谱法、分光光度法、滴定法及排水法对硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)过程中的产物进行分析,确定反应过程中N2H4的断键机制。结果表明,硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)反应过程中没有叠氮酸、氮氧化物及氢气生成,产物主要是N2,生成的N2的量与消耗的N2H4的量接近1∶1;当存在U(Ⅵ)时,生成的NH+4产量较低,当U(Ⅵ)反应完全后,NH+4的产生速率急剧增大;N2H4以N-N断键和N-H断键两种方式共存;反应温度升高有利于加快由U(Ⅵ)制备U(Ⅳ)还原反应的进行。  相似文献   

4.
采用分光光度法研究了HNO3溶液中U(Ⅳ)还原Np(Ⅴ)的反应,获得了动力学方程-dc (Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.7 (U(Ⅳ))c1.9 (H+)c (NO-3),25℃时反应速率常数k=(6.37±0.49)×10-3 L3.6/(mol 3.6•min),反应活化能Ea=60.13 kJ/mol。结果表明,浓度为0~4.2×10-2mol/L的U(Ⅵ) 对U(Ⅳ)还原Np(Ⅴ)的反应几乎没有影响,并探讨了可能的反应机理。  相似文献   

5.
铀(Ⅵ)的拉曼光谱定量分析   总被引:2,自引:2,他引:0  
建立了Purex后处理工艺水相和有机相料液中U(Ⅵ)的拉曼光谱分析方法。对于水相体系,870 cm-1处UO2+2的拉曼谱峰强度与U(Ⅵ)质量浓度在5.0~450.0 g/L范围内呈现良好的线性关系,r2=0.9999,检出限为1.2 g/L。增加仪器的积分时间可以使U(Ⅵ)的检出限降至0.2 g/L。硝酸、其他锕系元素与裂片元素的存在对U(Ⅵ)的检测无影响。对于含0.5~4.0 mol/L硝酸的70.0 g/L U(Ⅵ)溶液,6次检测的相对标准偏差均不高于1.4%。进行含有裂片元素的重加回收实验,重加回收率在98.3%~101.6%之间。在有机相体系,拉曼信号强度与U(Ⅵ)质量浓度在5.0~107.0 g/L范围内呈现线性关系,r2=0.9990,检出限为0.7 g/L。该方法具有测定简便、无需考虑干扰、绿色无损等优点,可实现现场的快速检测,适用于水相和有机相中常量U(Ⅵ)的定量检测。  相似文献   

6.
铀的多配位化学不仅在新型锕系化合物的结构研发中具有重要地位,也对环境和核废料处理问题产生重要影响。本研究报道了激光溅射U靶在N2O载气中冷却膨胀生成[UO2(N3)n]+(n=0—4)的质谱结果,并结合理论计算对所生成离子的稳定结构和成键相互作用进行了分析。结果显示,N3以自由基的形式与UO+2配位,且第一个N3配体与UO+2存在成键相互作用。此外,进一步的定域化分子轨道分析表明,体系中存在多中心轨道离域。  相似文献   

7.
通过静态吸附实验,研究了pH值、吸附时间、铀初始质量浓度、吸附剂用量等因素对凹凸棒石及凹凸棒石与硫酸亚铁协同吸附铀的影响,从热力学和动力学方面对吸附过程进行了分析,并通过红外光谱(IR)和扫描电镜(SEM)探讨了其吸附机理。结果表明,当温度为25 ℃、pH值为5.0、凹凸棒石投加量为15 g/L、铀初始质量浓度为100 mg/L、吸附反应30 min时,凹凸棒石对UO2+2的吸附率达89.5%,饱和吸附量可达40.8 mg/g以上;加硫酸亚铁后,凹凸棒石和硫酸亚铁协同吸附铀的效果大幅提高,在25 ℃、pH值为6.5、凹凸棒石用量20 g/L、FeSO4用量1 g/L、铀初始质量浓度为100 mg/L、吸附时间30 min时,凹凸棒石和硫酸亚铁协同对UO2+2的吸附率达99.9%以上,经处理的含铀废水能达国标排放。凹凸棒石对UO2+2的吸附遵循Langmuir吸附等温线;凹凸棒石及其协同体系对UO2+2的吸附动力学模型符合准二级动力学方程。凹凸棒石吸附铀前后的红外光谱表明,凹凸棒石主要是通过羟基、胺基等基团与铀络合进行吸附的。  相似文献   

8.
作为核废物地质处置库缓冲回填材料的主要成分,蒙脱石在特殊环境(高温、高压和pH多种因素作用)下吸附阻滞核素的行为对缓冲回填材料的性能评估至关重要。为从微观分子尺度探究特殊环境下蒙脱石层间核素离子的吸附扩散行为,本文采用蒙特卡罗(MC)和分子动力学(MD)方法,分别研究了Cs+/UO2+2在蒙脱石层间的吸附行为,以及高温、高压和pH值多种因素作用下的水化和扩散动力特征。MC结果表明:蒙脱石层间的Cs+、UO2+2周围分别会形成1层和2层水化壳,且层间水分子与四面体中氧原子之间形成了明显的氢键;当c=1.25 nm时,蒙脱石层间最多可吸附285个水分子。MD结果表明:高温、高压和pH值都会对Cs+、UO2+2的水化和扩散产生影响。常温、常压下pH值分别为11.85、12.15时,Cs+、UO2+2水化壳中的水分子数最多;pH值分别为12.15、11.85时,Cs+、UO2+2的扩散系数最大,分别为5.31×10-13 m2/s和1.11×10-12 m2/s。与常温、常压相比,高温、高压下Cs+、UO2+2水化壳中的水分子数最多时,pH值分别为7.00、12.15;而Cs+、UO2+2扩散系数最大(1.12×10-12 m2/s、1.01×10-12 m2/s)时的pH值均为12.15。  相似文献   

9.
肼为还原剂催化还原U(Ⅵ)制备U(Ⅳ)的工艺条件   总被引:3,自引:0,他引:3  
研究了硝酸体系中以铂黑为催化剂、肼为还原剂还原制备U(Ⅳ)的工艺条件,考察了硝酸浓度、肼浓度、反应温度、催化剂用量等对U(Ⅵ)转化率及副反应的影响。当铀浓度为0.90mol/L时,优化的工艺条件为:初始硝酸浓度0.80mol/L,初始肼浓度1.0mol/L左右,反应温度60℃,反应液25mL时催化剂铂黑用量为0.2g,反应3h后U(Ⅵ)的转化率大于99%。  相似文献   

10.
利用聚乙烯醇和海藻酸钠制备了硫酸盐还原菌微球,探讨了Zn2+、Cu2+、乙酸钠、草酸钠和柠檬酸钠对其还原U(Ⅵ)的影响,考察了其选择性去除U(Ⅵ)的工艺。实验结果表明,当Zn2+或Cu2+浓度低于100 mg/L时,U(Ⅵ)还原未受显著影响,但当其增至150 mg/L时,U(Ⅵ)还原被完全抑制。当单齿配体有机物(乙酸钠)存在时,U(Ⅵ)可被彻底还原;而多齿配体有机物(草酸钠和柠檬酸钠)存在时,会延缓甚至完全抑制U(Ⅵ)的还原。对于无机U(Ⅵ)重金属体系,可利用U(Ⅵ)和硫酸盐还原自由能的差异,适当降低COD/SO2-4比值直接选择性去除U(Ⅵ);对于有机U(Ⅵ)重金属体系,可通过多齿配体有机物络合U(Ⅵ),同时利用硫化物选择性沉淀重金属,间接实现U(Ⅵ)的选择性去除。  相似文献   

11.
用分光光度法研究了硝酸体系中特丁基肼还原Np(Ⅵ )的动力学。考察了特丁基肼浓度、酸度、NO-3 浓度、UO2 + 2 浓度、Fe3 + 浓度以及温度等对反应速率的影响。求出了反应动力学方程 :-dc(Np(VI) ) /dt =kc(Np(Ⅵ) )c0 .9(TBH) /c0 .75(H+ )。 2 5℃时的速率常数 :k=5 .4 4 (mol/L) -0 .15·min-1。反应的表观活化能 :Ea=6 1.2kJ/mol。在所研究的浓度范围内 ,NO-3 ,UO2 + 2 ,Fe3 + 对反应速率影响较小 ;而升高温度能显著提高反应速率  相似文献   

12.
为明确酸性条件下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)的反应历程和反应机理,有针对性地提高其反应速率、优化工艺流程,本文采用电子自旋共振(ESR)法实验研究•NH2转化为•OH的机理及0.25 mol/L和0.5 mol/L N2H4浓度条件下不同酸度的高氯酸体系中Pt催化N2H4分解过程中产生的自由基,确定反应过程中pH值对N2H4断键的影响机制。结果表明,在高氯酸介质中,Pt催化N2H4分解反应体系中检测到的•OH是由N2H4分解产生的•NH2转化而来;该反应体系中酸度会对N2H4分解产生影响,在酸度逐渐降低的过程中Pt催化N2H4分解的反应速率表现为先增大后减小的趋势,其中在pH=1~2之间时Pt催化N2H4分解反应最为迅速。  相似文献   

13.
为明确硝酸溶液中以Mn2+作催化剂时,亚硝酸氧化破坏H2C2O4的具体化学行为和反应机理,本文考察了在硝酸和硫酸体系中以Mn2+作催化剂时亚硝酸氧化H2C2O4的差异、Mn2+与草酸络合对亚硝酸氧化Mn(Ⅱ)到Mn(Ⅲ)的作用以及Mn(Ⅲ)破坏H2C2O4过程中产生的自由基,获得了具体的催化反应历程,推测了反应机理。结果表明,亚硝酸在催化反应过程中起主导作用,加入亚硝酸可有效消除反应初期存在的诱导期;反应过程中,溶液中游离的Mn2+与H2C2O4络合生成了MnC2O4,而作为配体的草酸降低了Mn(Ⅱ)被氧化到Mn(Ⅲ)的反应活化能,使得亚硝酸能氧化MnC2O4  相似文献   

14.
研究了肼的初始浓度、硝酸浓度、催化剂的量(S/V)、温度、β放射性对Pt催化肼分解反应速率的影响,获得了其动力学方程。结果表明:增大肼的初始浓度、温度、催化剂的量和降低硝酸浓度,肼的分解速率加快;β放射性对Pt催化体系中肼的分解速率有显著的提高作用,其分解表观速率常数比单独Pt催化提高了19.3倍,比单独β辐解提高了1.35倍,β放射性辐照位置不同肼的分解速率也不同。Pt催化硝酸体系中肼分解的动力学速率方程为:-d c(N 2H+5)/d t=kc(N 2H^+5)c^-0.39(HNO 3),296 K时,速率常数k=(5.90±0.35)×10^-3mol/(L·min),活化能E a=(333.3±2.9)J/mol。  相似文献   

15.
采用三重四级杆质谱模拟并分析微观含铀分子化学键断裂形成新的物质的过程以探讨单质铀的产生机理。结果表明,含铀分子在质谱中离子化后经碰撞诱导解离可生成U+。研究还发现,硝酸铀酰溶液通过电喷雾可形成UO+2(m/z 270)、UO2OH+(m/z 287)、UO2H2OOH+(m/z 305)、UO2NO+3(m/z 332)、UO2(H2O)3NO+3(m/z 386)及双聚铀酰离子[(UO2NO3H2O)2NO3+(m/z 762),在具有一定动能N2的碰撞下它们均可产生游离的U+。通过模拟实验推测,天然单质铀形成的微观机理为:在漫长地质年代中放射性核素持续衰变产生的能量粒子撞击含铀分子使其化学键断裂生成游离铀离子,在封闭或强还原性等特殊地质条件下形成单质铀并被保存下来。  相似文献   

16.
本文采用恒速升温和等温烧结实验方法研究了亚化学计量UO2-x燃料芯块的晶粒生长动力学。结果表明,以UO2+x+5%U为原料,可得到密度为94.91%TD~96.23%TD(TD为理论密度)、O与U的原子个数比为1.975~1.990的合格的亚化学计量UO2-x燃料芯块;在烧结温度≤1 650 ℃时晶粒生长速率较低,在烧结温度≥1750 ℃时晶粒生长速率较高;初始晶粒尺寸G0不能忽略不计,亚化学计量UO2-x燃料芯块的晶粒生长动力学符合4次方模型G4-G40=k0texp(-1 000Q/RT),晶粒生长速率常数k0=78.76 μm4/h,激活能Q=433.35 kJ/mol。  相似文献   

17.
以正十二烷为稀释剂,研究了甲基膦酸二甲庚酯(DMHMP)萃取剂对硝酸介质中Zr(Ⅳ)的萃取性能。从3.0 mol/L HNO3中萃取Zr(Ⅳ)的分配比与萃取剂浓度及硝酸根浓度的关系表明:萃取过程中DMHMP以中性萃取剂形式与Zr(Ⅳ)配位,萃取反应方程式主要为: Zr4++2DMHMP+4NO-3=Zr(NO3)4·2DMHMP 随着硝酸浓度的增大,还会生成Zr(NO3)4·2DMHMP·2HNO3和Zr(NO3)4·2DMHMP·3HNO3。该反应为放热反应,降低温度有利于DMHMP对Zr(Ⅳ)的萃取。  相似文献   

18.
以伊利石和高岭石为吸附剂,通过静态吸附法研究了其对U(Ⅵ)的吸附特性。考察了接触时间、初始浓度、吸附剂质量、pH、温度、离子种类、腐殖酸等对其吸附效果的影响;采用红外光谱(FTIR) 对伊利石和高岭石的结构进行了表征。研究结果表明:伊利石和高岭石对U(Ⅵ)具有很强的吸附能力,在10 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.04 g、pH=5的条件下,伊利石对U(Ⅵ)的吸附效果最好;在12 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.01 g、pH=5的条件下,高岭石对U(Ⅵ)的吸附效果最好;随着温度的升高,伊利石和高岭石对U(Ⅵ)的吸附能力不断增强,尤其是伊利石;溶液中Mg2+、CO2-3、HCO-3显著降低了伊利石和高岭石对U(Ⅵ)的吸附效果;随着腐殖酸浓度的增加,伊利石对U(Ⅵ)的吸附能力提高,高岭石对U(Ⅵ)的吸附能力降低。  相似文献   

19.
在振动搅拌槽中,研究了UO_2(NO_3)_2-HNO_3-N_2H_5NO_3(H_2O)/30%TBP(煤油)体系的水相电解液组分浓度对U(Ⅵ)电解还原速率的影响。根据实验数据,经回归分析得反应动力学微分方程: -(d[U(Ⅵ)]/dt)=k[U(Ⅵ)]~(0.77)[N_2H_5~+]~(0.061)[HNO_3]~0.017式中速度常数k是温度的函数。25℃时,k=0.0019。在实验浓度范围内,U(Ⅵ)还原速率随U(Ⅵ)浓度升高而增大,表现反应级数为0.75级,而[N_2H_5~+]及[HNO_3]影响很小,反应级数近于0。初步探讨了硝酸的电解还原以及硝酸肼对其还原过程的抑制作用,给出了不同硝酸浓度下的极化曲线。对于硝酸电解还原过程中主要产物亚硝酸的生成量与硝酸浓度、电解时间及肼浓度等的关系进行了讨论。  相似文献   

20.
单甲基肼还原Np(Ⅴ)的反应动力学   总被引:1,自引:1,他引:0  
用分光光度法研究了HNO3介质中单甲基肼(MMH)还原Np(Ⅴ)的动力学行为.通过考察还原剂浓度和酸度等条件对Np(Ⅴ)动力学过程的影响,确定了反应的动力学速率方程为-dc(Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.36(MMH)c(H+),在温度θ=35℃,离子强度为2 mol/L时,反应速率常数k=0.004 79(mol/L)-1.36/min.研究了离子强度、c(U(Ⅵ))和温度对反应的影响.结果表明,离子强度和c(U(Ⅵ))对反应速率无显著影响;反应活化能为60.43 kJ/mol,随着温度的升高,反应速率加快.并在此基础上推测了可能的反应机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号