首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
利用无人机航拍获得光学影像数据,结合深度学习理论,建立树种识别模型,以期为大规模树种识别提供一种新的方式。首先以福建安溪县为例,采用无人机获取20 m及40 m高度的航拍影像。其次,以树种为对象,对航拍影像进行分割,获得12种树种影像。最后,结合深度学习理论,采用DenseNet卷积神经网络建立树种识别模型,探讨不同航拍高度以及不同网络深度对树种识别的影响。结果表明:不同航拍高度的树种识别模型,其分类精度均达80%以上,最高精度为87.54%。从航拍影像解析度分析,随着航拍影像解析度的下降,模型识别精度呈现下降趋势,以20 m航拍影像数据建构的树种识别模型,其分类精度高于40 m模型;从模型网络深度分析,随着模型网络层数的增加,模型分类精度出现下降现象,DenseNet121模型分类精度高于DenseNet169模型分类精度。综上所述,基于无人机航拍影像,结合深度卷积神经网络,提出了新的树种识别方式,并以安溪县森林树种识别为例证明了该分类框架的有效性。  相似文献   

2.
利用无人机航拍获得光学影像数据,结合深度学习理论,建立树种识别模型,以期为大规模树种识别提供一种新的方式。首先以福建安溪县为例,采用无人机获取20 m及40 m高度的航拍影像。其次,以树种为对象,对航拍影像进行分割,获得12种树种影像。最后,结合深度学习理论,采用DenseNet卷积神经网络建立树种识别模型,探讨不同航拍高度以及不同网络深度对树种识别的影响。结果表明:不同航拍高度的树种识别模型,其分类精度均达80%以上,最高精度为87.54%。从航拍影像解析度分析,随着航拍影像解析度的下降,模型识别精度呈现下降趋势,以20 m航拍影像数据建构的树种识别模型,其分类精度高于40 m模型;从模型网络深度分析,随着模型网络层数的增加,模型分类精度出现下降现象,DenseNet121模型分类精度高于DenseNet169模型分类精度。综上所述,基于无人机航拍影像,结合深度卷积神经网络,提出了新的树种识别方式,并以安溪县森林树种识别为例证明了该分类框架的有效性。  相似文献   

3.
提高图像质量与利用新的图像分类方法是提高遥感图像树种识别精度两个突破口. 本文基于VGG16的预训练模型与无人机可见光影像进行杉木、马尾松2个树种识别研究. 利用大疆精灵4RTK无人机, 搭载FC6310R相机, 采集南平市和三明市的杉木和马尾松人工纯林彩色图像. 通过图像预处理、标注、裁剪和增强等环节构建UAVTree2k和UAVTree20k两个数据集. 基于UAVTree2k数据集和VGG16模型在ImageNet数据集的预训练模型, 重新训练3个全连接层和Sigmoid层, 研究探讨不同迭代次数、不同批次大小、不同训练集和测试集划分比例对识别精度的影像. 研究结果表明, 当迭代次数为40、批次大小为16、训练集和测试集为6:4时, 模型识别效果最好, 测试精度达到98.63%; 小样本下, 基于VGG16的预训练模型具有良好的特征学习能力.  相似文献   

4.
梯田是坡耕地上最主要的水土保持工程,准确地提取梯田信息对水土保持监测和评价十分重要。为了解决无人机遥感梯田识别研究中梯田特征自动学习的问题,制作了一套像素级标注的梯田正射影像样本集并设计FCN-8s模型与DenseCRF模型结合的梯田识别方法。实验结果表明,该方法在山脊区梯田、密集水平梯田和不规则梯田识别的总体精度、F1分数和Kappa系数均值分别为86.85%、87.28%、80.41%,与其他方法相比,效果较好。该方法适用于无人机遥感梯田识别领域,是一种精确有效的识别方法。  相似文献   

5.
针对隧道裂缝人工识别低效、检修不便以及隧道环境复杂多变、检测易受噪声干扰等问题,文中提出一种基于深度学习的裂缝检测算法。通过神经网络对原始图像进行非裂缝区域过滤,减少无关背景信息的干扰,同时在分割算法基础上通过多维分类器将误识别的裂缝区域剔除。实验结果表明,密集连接卷积网络(DenseNet)在裂缝分类中最高可达99.95%的准确率,有效提升了隧道裂缝自动检测精度。  相似文献   

6.
徐浩  刘岳镭 《计算机科学》2021,48(7):225-232
深度学习在图像识别和声音处理方面已经展现了它优越的性能和广阔的发展前景,对于在禁飞区设立的无人机侦测系统,使用深度学习的方法判断无人机的声音信号具有一定的意义.为了获得更优的侦测效果,首先列举了目前具有代表性的特征提取和分类方法,并分析其优缺点;然后提出了一种扩大可用样本数量的数据处理方式,同时在实验中使用不同组合的深...  相似文献   

7.
针对无人机影像背景复杂,城市在建道路分类易被相似目标、建设设施等信息干扰的问题,提出了基于改进U-Net模型的无人机影像在建道路提取模型。为获取更深层次的边界细节信息,采用Res2net结构分阶替换原有U-Net网络的卷积层,提高网络下采样深度;增加CBAM双注意力机制模块引于各分块特征信息之后,对空间和通道进行重新校准,强调道路特征,校正模型参数;引入改进的Dense ASPP模块,与前层次的细节信息拼接,增强道路区域上下文信息的获取能力。结果表明,所提出的改进U-Net网络训练的提取模型在精确率、召回率、F1分值、平均交并比等评价指标上,均优于传统的U-Net、DeeplabV3+、HRnet等网络模型,可有效提取建设道路各阶段信息,针对在建道路项目的施工进度监测提供方法支持。  相似文献   

8.
快速、可靠地获取遥感影像中的水体对于指导人类生产活动和掌握水资源的分布规律、开发保护具有重要意义。本研究根据无人机遥感影像在复杂环境下采用OCRNet语义分割模型结合HRNet骨干网进行水体提取,充分利用了水图像的特征,有效抑制了非水噪声,加快了模型的收敛速度。实验结果表明,该网络在准确率上有着不错的表现,Acc可达到99.30%,mIoU为0.9281,kappa系数(KC)为0.9231。  相似文献   

9.
针对中华传统刺绣工艺传承保护问题中的分类任务,传统的刺绣分类方法存在耗时长、精度低以及需要大量掌握专业知识的人力资源等问题;设计了一种基于改进DenseNet的刺绣图像分类识别方法;构建刺绣图像分类识别数据集;采用局部二值模式LBP、Canny算子边缘提取以及Gabor滤波等方式提取纹理特征,将不同特征图与原图合并为四至六通道图像数据集送入网络进行消融试验,扩充了数据集宽度;为稳定训练过程,加速损失收敛速度,提出引入SPP (spatial pyramid pooling)结构优化模型;为提高分类识别精度使用Leaky ReLU激活函数优化ReLU函数;实验结果表明基于改进DenseNet的刺绣图像分类识别方法可解决传统刺绣图像分类方法中存在的问题,改进后的刺绣图像分类模型与基准模型相比准确率提高了8.1%,高达97.39%。  相似文献   

10.
《信息与电脑》2019,(19):46-48
无人机侦察图像是获取战场情报信息的重要手段。针对侦察图像目标识别速度慢、效率不高等问题,笔者结合研究现状提出将深度学习应用到侦察图像目标识别领域。首先标注了一个地面主要武器装备数据集,然后在YOLOv3算法官方参数权重的基础上采用迁移学习的方法进行微调训练,最后使用训练好的模型进行目标识别。实验结果表明,基于深度学习的YOLOv3算法可以较好地实现无人机侦察图像目标识别,且可以满足实时性的要求。  相似文献   

11.
集成U-Net方法的无人机影像胡杨树冠提取和计数   总被引:2,自引:0,他引:2  
塔里木河流域的胡杨林是该荒漠区域典型的森林资源,胡杨树冠大小和株数信息对塔里木河流域森林资源监测、生态保护和恢复具有重要意义。由于该流域乔灌草植物群落分布的复杂性,传统方法很难实现胡杨树冠的精准分割和大范围的株数提取。以塔里木河中游胡杨林为研究区,选取几块典型胡杨林区域,提出集成深度学习和分水岭分割的处理方法,对密集胡杨树冠的精准分割和单株胡杨的提取进行了深入探讨。首先,将无人机影像(空间分辨率0.16 m)无缝拼接生成正射影像;采用U-Net卷积神经网络对胡杨树冠覆盖区域进行精准分割;在U-Net模型分割的基础上使用标记分水岭方法对密集胡杨树冠进行自动再分割和单株计数,计算出所选研究区的胡杨株数并精准定位。结果表明U-Net卷积神经网络对胡杨的所有树冠区域提取的平均精度可达94.1%,在胡杨树冠覆盖区域识别分割的基础上,用标记分水岭分割方法对胡杨单木计算总体精度为93.3%。研究认为,结合深度学习和标记分水岭方法为自动化大范围森林资源监测提供了新思路和借鉴经验。  相似文献   

12.
集成U-Net方法的无人机影像胡杨树冠提取和计数   总被引:3,自引:1,他引:3  
塔里木河流域的胡杨林是该荒漠区域典型的森林资源,胡杨树冠大小和株数信息对塔里木河流域森林资源监测、生态保护和恢复具有重要意义。由于该流域乔灌草植物群落分布的复杂性,传统方法很难实现胡杨树冠的精准分割和大范围的株数提取。以塔里木河中游胡杨林为研究区,选取几块典型胡杨林区域,提出集成深度学习和分水岭分割的处理方法,对密集胡杨树冠的精准分割和单株胡杨的提取进行了深入探讨。首先,将无人机影像(空间分辨率0.16 m)无缝拼接生成正射影像;采用U-Net卷积神经网络对胡杨树冠覆盖区域进行精准分割;在U-Net模型分割的基础上使用标记分水岭方法对密集胡杨树冠进行自动再分割和单株计数,计算出所选研究区的胡杨株数并精准定位。结果表明U-Net卷积神经网络对胡杨的所有树冠区域提取的平均精度可达94.1%,在胡杨树冠覆盖区域识别分割的基础上,用标记分水岭分割方法对胡杨单木计算总体精度为93.3%。研究认为,结合深度学习和标记分水岭方法为自动化大范围森林资源监测提供了新思路和借鉴经验。  相似文献   

13.
朱赟  吴炜 《计算机工程与应用》2004,40(21):90-91,156
介绍了利用平均色、代表色和轮廓线分布的联合图像特征,使用决策树建立图像分类模型方法。该方法使用变形的决策树来改善决策树的分类学习效率。实验数据表明效果显著,在对分类效果影响不大的情况下,有效提高了使用效率。  相似文献   

14.
为推广国产高分数据在森林树种分类方面的应用,以北京市延庆区八达岭国家森林公园主要区域的6期高分二号影像为数据源,在分层分类的基础上,利用支持向量机递归特征消除、C5.0决策树、FSO 3种特征优选方法,从4种特征维度下实现面向对象的支持向量机和随机森林的森林树种分类,最终取得总体精度平均为83.65%,特定树种生产者精度介于93.75%(山杏)和38.10%(刺槐)之间,特定树种用户精度介于100%(华北落叶松)和44.74%(榆树)之间的良好结果。结果表明:C5.0决策树耗时最短(0.01 h)且其所选特征应用于分类总体精度最高(86.90%);在不同特征维度下支持向量机分类的总体精度比随机森林平均高出3.28%;支持向量机和随机森林均对特征维度不敏感,但良好的特征优选结果仍会对支持向量机的分类效率(最高提升86.98%)和随机森林的分类精度(最高提升9.22%)产生较大影响。  相似文献   

15.
为推广国产高分数据在森林树种分类方面的应用,以北京市延庆区八达岭国家森林公园主要区域的6期高分二号影像为数据源,在分层分类的基础上,利用支持向量机递归特征消除、C5.0决策树、FSO 3种特征优选方法,从4种特征维度下实现面向对象的支持向量机和随机森林的森林树种分类,最终取得总体精度平均为83.65%,特定树种生产者精度介于93.75%(山杏)和38.10%(刺槐)之间,特定树种用户精度介于100%(华北落叶松)和44.74%(榆树)之间的良好结果。结果表明:C5.0决策树耗时最短(0.01 h)且其所选特征应用于分类总体精度最高(86.90%);在不同特征维度下支持向量机分类的总体精度比随机森林平均高出3.28%;支持向量机和随机森林均对特征维度不敏感,但良好的特征优选结果仍会对支持向量机的分类效率(最高提升86.98%)和随机森林的分类精度(最高提升9.22%)产生较大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号