首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-high-purity silicon tetrachloride (SiCl4) is demanded as an electronic-grade chemical to meet the stringent requirements of the rapidly developing semiconductor industry. The high requirement for ultra-high-purity SiCl4 has created the need for a high-efficient process for reducing energy consumption as well as satisfying product quality. In this paper, a mass of production technology of ultra-high-purity SiCl4 was successfully developed through chlorination reaction in the ultraviolet (UV)-based photo microreactor coupled with the distillation process. The influences of key operational parameters, including temperature, pressure, UV wavelength and light intensity on the product quality, especially for hydrogen-containing impurities, were quantified by the infrared transmittance of Fourier transform infrared spectroscopy (FT-IR) at 2185 cm−1 and 2160 cm−1 indicating that characteristic vibrational modes of SiH bonds, as well as the operating conditions of distillation were also investigated as key factors for metal impurities removing. The advanced intensification of SiCl4 manufactured by the integration of photo microreactor and distillation achieves the products with superior specifications higher than the standard commercial products.  相似文献   

2.
光纤通信技术具有通信容量大、传输损耗低、保密性能好等优点,是一种极有前途的多路通信手段。相关技术中利用硅基电子气SiCl4经化学气相沉积法制备光纤预制棒,但是SiCl4中的含金属杂质和含氢杂质因对光子产生很大的振动吸收而增加光纤传输中光的吸收损耗。光纤用SiCl4对纯度的要求极高,其中含氢杂质甲基氯硅烷的含量需降低到5mg/kg或者更低。通过光氯化法结合精馏工艺提纯SiCl4是目前为止制备光纤用高纯SiCl4最合适的方法。本文针对光氯化法去除甲基氯硅烷杂质的工艺过程进行分子层面的反应分子动力学模拟研究,重点比较分析了Cl2与Cl自由基及反应温度对甲基氯硅烷的去除效果,并探究了不同的模拟体系中形成的主要的中间产物及其主要的转化路径,为光氯化除杂反应提供了基础的化学反应机理及工艺的改进方向。模拟结果表明,在反应体系中引入Cl自由基后对甲基氯硅烷的去除效率能够达到相同模拟条件下Cl2的2倍;体系的反应温度与甲基氯硅烷的去除效率之间的相互关系并不是单调变化的,存在最佳反应温度(373K)使甲基氯硅烷的去除效率达到最大;甲基氯硅烷分子中的C—H键及C—Si键因具有较大的键能而难断裂,只有当体系内反应温度升高到一定值后(423K)才可观察到C—H键的断裂,只有在体系内引入活泼的Cl自由基后才可观察到C—Si键的断裂。  相似文献   

3.
The modified Siemens process, which is the major process of producing polycrystal ine silicon through current technologies, is a high temperature, slow, semi-batch process and the product is expensive primarily due to the large energy consumption. Therefore, the zinc reduction process, which can produce solar-grade silicon in a cost effective manner, should be redeveloped for these conditions. The SiCl2 generation ratio, which stands for the degree of the side reactions, can be decomposed to SiCl4 and ZnCl2 in gas phase zinc atmosphere in the exit where the temperature is very low. Therefore, the lower SiCl2 generation ratio is profitable with lower power consumption. Based on the thermodynamic data for the related pure substances, the relations of the SiCl2 generation ratio and pressure, temperature and the feed molar ratio nZn=nSiCl4 ? ? are investigated and the graphs thereof are plotted. And the diagrams of KpΘ–T at standard atmosphere pressure have been plotted to account for the influence of temperature on the SiCl2 generation ratio. Furthermore, the diagram of KpΘ–T at dif-ferent pressures have also been plotted to give an interpretation of the influence of pressure on the SiCl2 gener-ation ratio. The results show that SiCl2 generation ratio increases with increasing temperature, and the higher pressure and excess gas phase zinc can restrict SiCl2 generation ratio. Finally, suitable operational conditions in the practical process of polycrystalline silicon manufacture by gas phase zinc reduction of SiCl4 have been established with 1200 K, 0.2 MPa and the feed molar ratio nZn=nSiCl4 ? ? of 4 at the entrance. Under these conditions, SiCl2 generation ratio is very low, which indicates that the side reactions can be restricted and the energy consumption is reasonable.  相似文献   

4.
This study investigated the hydrogenation of silicon tetrachloride (SIC14) in microwave plasma. A new launcher of argon (Ar) and hydrogen (Ha) plasma was introduced to produce a non-thermodynamic equilibrium activation plasma. The plasma state exhibited a characteristic temperature related to the equilibrium constant, which was termed "Reactive Temperature" in this study. Thus, the hydrogenation of SIC14 in the plasma could easily be handled with high conversion ratio and very high selectivity to trichlorosilane (SiHC13). The effects of SiC14/Ar and H2/Ar ratios on the conversion were also investigated using a mathematical model developed to determine the op- timum experimental parameters. The highest hydrogenation conversion ratio was produced at a H2/SiCl4 molar ratio of 1, with mixtures of SICl4 and H2 to Ar molar ratio of 1.2 to 1.4. In this plasma, the special system pressure and incident power were required for the highest energy efficiency of hydrogenating SIC14, while the optimum system pressure varies from 26.6 to 40 kPa depending on input power, and the optimum feed gas (He and SiCI4) molar en- ergy input was about 350 kJ. mo1-1.  相似文献   

5.
A technique for synthesizing ultra-high-purity ZrF4 using chemical vapor deposition in a ZrBr4–HF system is developed and a purification mechanism is clarified. The Fe concentration in ZrF4 is evaluated at less than 10 ppb based on analysis of the transmission loss spectrum of a fiber prepared using synthesized ZrF4. Purification is achieved mainly in a sublimation process of ZrBr4, and purification efficiency is determined by sublimation temperature and activity of impurities in ZrBr4. The concentration of transition-metal impurities in ZrF4, synthesized by chemical vapor deposition in the ZrBr4–HF system, is expected to be less than 1 ppb.  相似文献   

6.
Arsenic sulfide glass optical fibers typically possess extrinsic absorption bands in the infrared wavelength region associated with residual hydrogen and oxygen related impurities, despite using purified precursors. We report a purification process based on the addition of tellurium tetrachloride (TeCl4) to the glass. During melting, the chlorine from TeCl4 reacts with the hydrogen impurities to produce volatile products (e.g., HCl) that can be removed by subsequent dynamic distillation. The processing conditions have been modified accordingly to produce optical fibers with significantly reduced loss due to hydrogen sulfide impurity content (1.5 dB/m).  相似文献   

7.
基于Gibbs自由能最小原理,对硅和四氯化硅(SiCl4,STC)耦合加氢反应体系进行了热力学分析。通过化学平衡产物组成分布的分析,确定了反应体系主要产物为三氯硅烷(HSiCl3,TCS)、二氯硅烷(H2SiCl2,DCS)、盐酸(HCl),并构造了3个相应的独立反应,讨论了对应的反应热(ΔrHθm)、自由能(ΔrGθm)和平衡常数(Kθp)与温度的关系。计算所采用的温度为673~923 K,压力为101.325 ~2 026.5 kPa,原料H2与SiCl4物质的量比为1~5。结果表明,生成TCS和DCS的反应为体系随着温度升高,四氯化硅平衡转化率及三氯硅烷产率降低;高压和适中的原料配比(H2与SiCl4物质的量比)有利于四氯化硅转化率及三氯硅烷产率的提高。  相似文献   

8.
Adsorption equilibrium is of great importance for the preparative supercritical fluid chromatography(pre-SFC) in defining supercritical adsorption behavior and the industrial amplification.This paper presents adsorption isotherms of Z-ligustilide from supercritical carbon dioxide(SC-CO_2) on C18-bonded silica.Adsorption behavior was studied at 305.15 K,313.15 K and 323.15 K with SC-CO_2 density varying from 0.687 g·cm~(-3) to0.863 g·cm~(-3) with the elution by characteristic points(ECP) method.The adsorption amount of Z-ligustilide from SC-CO_2 on C18-bonded silica decreased with the increasing density of the mobile phase as well as the increasing temperature.Adsorption equilibrium data were fitted by Langmuir and Freundlich isotherm models,and the Langmuir isotherm model performed better for describing the whole adsorption process on the column.The monolayer saturation adsorption capacity of Z-ligustilide is in the range of 3.0 × 10~(-4) mg·cm~(-3) to5.5 × 10~(-4) mg·cm~(-3) with an average value of 4.0 × 10~(-4) mg·cm~(-3).  相似文献   

9.
Arsenic selenide glass optical fibers typically possess extrinsic absorption bands in the infrared wavelength region associated with residual hydrogen and oxygen related impurities, despite using purified precursors. We report a purification process based on the addition of 0.1 wt% tellurium tetrachloride (TeCl4) to the glass. During melting, the chlorine from TeCl4 reacts with the hydrogen impurities to produce volatile products (e.g., HCl) that can be removed by subsequent dynamic distillation. The processing conditions have been modified accordingly to give very low H–Se impurity content. Consequently, the H–Se absorption band centered at 4.57 μm has been reduced from tens of dB/m to 0.2 dB/m.  相似文献   

10.
硫酸法钛白酸解尾渣工艺矿物学特性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
采用激光粒度仪、XRD、XRF、ICP-AES、SEM-EDS、比重法、筛分法等对硫酸法钛白生产过程中酸解尾渣进行系统的工艺矿物学特性分析,旨在为回收钛资源提供理论指导。研究表明,酸解尾渣表面潮湿,液相约占45%,其中易水解的可溶钛为4.06%(以TiO2质量分数计);固相中不溶TiO2干基含量为17.14%,固相颗粒粒径主要分布于1~100 mm,密度为3.21 g·cm-3,颗粒大小、形状不一,有块状、锥状及团聚絮状。通过筛分实验得知钛矿与其他杂质颗粒的粒径、密度有明显差异,少量120 mm以上颗粒含有石膏,密度约3.41 g·cm-3;18~75 mm主要为钛铁矿,密度大于3.54 g·cm-3,钛品位可达26%;18 mm以下颗粒主要为硅泥,密度约2.90 g·cm-3,易团聚,与水形成黏稠物,难分离。  相似文献   

11.
With the development of microreaction technology and the key issues of liquid-liquid batch bromination process for the synthesis of 4-bromo-3-methylanisole, a modular microreaction system was constructed by taking microreactor and microbead-packed bed as the major functional microdevice units to intensify the bromination of methylanisole. And in this modular microreaction system, the liquid-liquid heterogeneous continuous bromination of 4-bromo-3-methylanisole was studied. The following optimized conditions were obtained, concentration of Br2 (xBr2): 17.5 wt%, molar ratio of Br2 to methylanisole (nBr2/nM): 1.01, initial reaction temperature (T): 0℃, residence time (τ): 0.78 min, with yield of 4-bromo-3-methylanisole more than 98%, and percentage of polybrominated side product less than 1%. Comparing with the conventional batch process, the continuous microreaction technology has obvious advantages. For example, it can change the traditional batch process to a continuous one with a significant increase of productivity (space time yield: 6.5×104 kg/(m3·h)). Besides, since this process is mainly controlled by mass transfer, the modular microreaction system with excellent mass transfer could reduce 50% of polybrominated side product. The study might provide a good foundation for the continuously controllable synthesis of 4-bromo-3-methylanisole in safety.  相似文献   

12.
谢沛  王凯  邓建  骆广生 《化工学报》2020,71(9):4168-4176
根据微化工技术发展的主要趋势,针对4-溴-3-甲基苯甲醚间歇非均相合成技术存在的问题,以微筛孔反应器与玻璃微珠填充床为核心功能微设备单元构建了模块化微反应系统,并在此模块化微反应系统内对液-液非均相连续溴化合成4-溴-3-甲基苯甲醚开展研究。通过优化操作条件,在溴浓度(xBr2)为17.5%(质量分数)、溴与间甲基苯甲醚摩尔比(nBr2/nM)为1.01、反应起始温度(T)为 0℃、停留时间为0.78 min条件下,4-溴-3-甲基苯甲醚的收率大于98%,多溴代副产物的含量仅为1%。与传统间歇溴化反应相比,模块化微反应系统内连续溴化反应具有十分明显的优势:可将间歇过程连续化,在保证安全的基础上极大地提升了反应的效率(时空收率为6.5×104 kg/(m3·h));另外,该过程是由传质控制的,微反应器的传质性能优异,可极大地改善产品的选择性(多溴代副产物的量减少50%)。该研究为4-溴-3-甲基苯甲醚的连续高效安全合成提供了技术和设备依据。  相似文献   

13.
潘薪羽  赵丽  马空军  王强 《化工学报》2017,68(12):4494-4499
采用反气相色谱法(IGC)研究原煤在温度433.15、443.15、453.15、463.15和473.15 K时的三维溶解度参数(HSP),并使用外推法得到原煤室温(298.15 K)时HSP的色散力分量(δd)、极性力分量(δp)、氢键力分量(δh)以及校正溶解度参数(δt)分别为δd=20.83(J·cm-31/2p=11.95(J·cm-31/2h=11.08(J·cm-31/2t=26.44(J·cm-31/2。同时,采用汉森三维溶解度参数软件(HSPiP)模拟原煤在室温下的HSP,得到δd=19.92(J·cm-31/2p=11.18(J·cm-31/2h=11.47(J·cm-31/2t=25.56(J·cm-31/2。IGC与HSPiP得出的数据一致,研究结果为煤的热力学性质研究及其溶胀剂的选择等应用提供了参考。  相似文献   

14.
CO2 mineralization as a promising CO2 mitigation strategy can employ industrial alkaline solid wastes to achieve net emission reduction of atmospheric CO2. The red mud is a strong alkalinity waste residue produced from the aluminum industry by the Bayer process which has the potential for the industrial CO2 large scale treatment. However, limited by complex components of red mud and harsh operating conditions, it is challenging to directly mineralize CO2 using red mud to recover carbon and sodium resources and to produce mineralized products simultaneously with high economic value efficiently. Herein, we propose a novel electrochemical CO2 mineralization strategy for red mud treatment driven by hydrogen-cycled membrane electrolysis, realizing mineralization of CO2 efficiently and recovery of carbon and sodium resources with economic value. The system utilizes H2 as the redox-active proton carrier to drive the cathode and anode to generate OH- and H+ at low voltage, respectively. The H+ plays as a neutralizer for the alkalinity of red mud and the OH- is used to mineralize CO2 into generate high-purity NaHCO3 product. We verify that the system can effectively recover carbon and sodium resources in red mud treatment process, which shows that the average electrolysis efficiency is 95.3% with high-purity (99.4%) NaHCO3 product obtained. The low electrolysis voltage of 0.453 V is achieved at 10 mA·cm-2 in this system indicates a potential low energy consumption industrial process. Further, we successfully demonstrate that this process has the ability of direct efficient mineralization of flue gas CO2 (15% volume) without extra capturing, being a novel potential strategy for carbon neutralization.  相似文献   

15.
以CoCl2·6H2O为原料,通过溶剂热法和磷化工艺在泡沫镍表面构建Co2P4O12阵列,Co2P4O12纳米线直径约200 nm。采用SEM、TEM和XRD进行形貌和晶体学特性表征,并利用三电极体系在碱性环境下测量电化学性能。在析氢过程中,只需要122 mV过电位就能达到10 mA·cm-2电流密度。析氧过程中,仅需要334 mV的过电位就能达到15 mA·cm-2电流密度。组装的电解池在15 mA·cm-2的电流密度下工作40 h后电解槽电压没有发生明显变化,展现出很好的稳定性。Co2P4O12/NF是一种有潜力的双功能催化剂。  相似文献   

16.
为提高Fe2+活化过硫酸钠(SPS)降解亚甲基蓝(MB)的效率,设计了一种声化学微反应器。首先研究了静置系统、磁力搅拌系统、毛细管微反应器系统和声化学微反应器系统中MB和硫酸亚铁(FeSO4)混合液pH值、FeSO4浓度、SPS浓度对MB降解率的影响。其次,在声化学微反应器系统和毛细管微反应器系统中研究了流道结构和流速对MB降解率的影响。结果表明:在不同的MB和FeSO4混合液pH值、FeSO4浓度下,声化学微反应器系统中MB降解率均高于其他反应系统。随着SPS浓度的增加,MB降解率呈上升趋势,但在声化学微反应器系统中增加SPS浓度会影响MB降解。相比于直线形、三角波形和半圆波形流道结构,MB在矩形波形流道结构中降解效率更高。溶液在管道内停留时间相同时,增加流速更有利于氧化降解反应的进行。实验表明:当MB浓度为0.2 mmol·L-1,MB和FeSO4混合液pH值为3、FeSO4浓度为1.4 mmol·L-1、SPS浓度为1.8 mmol·L-1,流道结构为矩形波形,流速为13.16 cm·s-1时,声化学微反应系统中MB降解率达到85.45%。  相似文献   

17.
以碳酸钠和高纯硫酸锰为原料,通过共沉淀法在氨缓冲溶液中制备高纯重质碳酸锰。当硫酸锰和碳酸钠溶液浓度都为1.5 mol·L-1、碳酸钠过量系数为110%、溶液pH为8.5、温度为50℃、滴加速率为120 ml·h-1时,得到的碳酸锰视密度达1.67 g·cm-3,振实密度达2.15 g·cm-3。氨缓冲体系增加了溶液的稳定性,抑制了溶液中氢氧化锰和偏氢氧化锰的生成,制备出的高密度碳酸锰形貌趋于球形,粒径分布均匀,D50平均大小为30.32 μm。以本研究制备的碳酸锰为锰原料焙烧得到的四氧化三锰松装密度为1.09 g·cm-3,振实密度为2.18 g·cm-3,锰的含量可达71.85%。  相似文献   

18.
磷酸铁(FePO4)是锂电池正极材料磷酸铁锂(LiFePO4)的核心前驱体,FePO4形貌及硫含量对合成的LiFePO4材料性能有重要影响。为得到类球形低硫FePO4产品,在传统液相沉淀法技术基础上做了改进优化,添加十六烷基三甲基溴化铵(CTAB)作为形貌助剂提高产品球形度,添加氨水作为配体形成磷酸铁铵配合物改善结晶过程,降低产品硫含量。结果表明:所制备的FePO4产品硫质量分数低,达到2.6×10 -5,形貌为均一的微米类球形颗粒,D50=11.4 μm,振实密度达到1.22 g/cm 3,有望成为制备高压实密度LiFePO4材料的核心前驱体。  相似文献   

19.
H2O2 used in the photo-Fenton reaction with iron catalyst can accelerate the oxidation of Fe2+ to Fe3+ under UV irradiation and in the dark (in the so called dark Fenton process). It was proved that conversion of phenol under UV irradiation in the presence of H2O2 predominantly produces highly hydrophilic products and catechol, which can accelerate the rate of phenol decomposition. However, while H2O2 under UV irradiation could decompose phenol to highly hydrophilic products and dihydroxybenzenes in a very short time, complete mineralization proceeded rather slowly. When H2O2 is used for phenol decomposition in the presence of TiO2 and Fe–TiO2, decrease of OH radicals formed on the surface of TiO2 and Fe–TiO2 has been observed and photodecomposition of phenol is slowed down. In case of phenol decomposition under UV irradiation on Fe–C–TiO2 photocatalyst in the presence of H2O2, marked acceleration of the decomposition rate is observed due to the photo-Fenton reactions: Fe2+ is likely oxidized to Fe3+, which is then efficiently recycled to Fe2+ by the intermediate products formed during phenol decomposition, such as hydroquinone (HQ) and catechol.  相似文献   

20.
The use of hybrid advanced oxidation processes(AOPs) for the removal of pollutants from industrial effluents has been extensively studied in recent literature. The aim of this study is to compare the performance of the photo,Fenton, photo-Fenton and ozone–photo–Fenton processes in terms of color removal and chemical oxygen demand(COD) removal of distillery industrial effluent together with the associated electrical energy per order. It was observed from the experimental results that the O_3/UV/Fe~(2 +)/H_2O_2 process yielded a 100% color and95.50% COD removals with electrical energy per order of 0.015 k W·h·m~(-3) compared to all other combinations of the AOPs. The effects of various operating parameters such as H_2O_2 and Fe~(2+) concentration, effluent pH, COD concentration and UV power on the removal of color, COD and electrical energy per order for the ozone–photo–Fenton process was critically studied and reported. The color and COD removals were analyzed using a UV/Vis spectrometer and closed reflux method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号