共查询到16条相似文献,搜索用时 62 毫秒
1.
《计算机科学与探索》2019,(3):383-393
链路预测是复杂网络的一个重要研究方向。基于节点结构相似性进行链路预测是目前常用的方法。真实网络中存在大量的局部群落结构,针对不同的网络结构构建算法是链路预测的核心问题。利用社交网络好友推荐策略,中介人倾向于将自己更熟悉的人介绍给目标用户,提出了一种节点相似性度量指标。该指标结合局部特征描述并有效区分了用户节点之间影响力的不同,更适用于一类特定的局部群落结构。依据该指标提出的加权好友推荐模型链路预测算法在12个数据集上的实验结果表明,该算法在AUC和Precision两个评价标准上具有明显优势。 相似文献
2.
链路预测是复杂网络的重要研究方向,当前的链路预测算法因可利用的网络信息有限,导致预测算法的精确度受限。为了提高预测算法的性能,采用改进的AdaBoost算法进行链路预测。首先根据复杂网络样本建立邻接矩阵,完成样本的矩阵化处理;然后采用AdaBoost算法进行分类训练,通过权重投票获取预测结果;最后,考虑到复杂网络弱分类器预测正负误差分布的不均衡问题,设置权重调整因子η及其调整范围[η1,η2],并根据η值动态调整AdaBoost算法的多个弱分类器分类结果的权重,从而获得准确的链路预测结果。实验结果证明,相比其他常用网络链路预测算法及传统AdaBoost算法,改进的AdaBoost算法的预测准确率优势明显,且在节点数量较多时,其预测时间性能和其他算法的差距较小。 相似文献
3.
4.
网络表示方法旨在将每个节点映射到低维向量空间,并保留节点在网络中的结构关系。有向网络的环中节点相互可达,破坏了非对称传递性,影响了模型对网络整体结构信息的学习。为削弱有向网络的环在表示学习中的影响,增强模型对全局结构信息的感知,文中提出了一种针对有向网络表示学习的优化方法。该方法借助TrueSkill方法获取节点的层级信息,将该信息转化为边权重并引入表示学习过程。文中将此方法应用到已有的多种有向网络表示学习方法中,多个有向网络数据集上的链接预测和节点分类任务的实验结果表明,所提方法的性能相比原有方法得到了明显提升。 相似文献
6.
现有的基于Word2vec的网络表示学习(NRL)算法使用随机游走(RW)来生成节点序列,针对随机游走倾向于选择具有较大度的节点,生成的节点序列不能很好地反映网络结构信息,从而影响表示学习性能的问题,提出了基于改进随机游走的网络表示学习算法。首先,使用RLP-MHRW算法生成节点序列,它在生成节点序列时不会偏向大度节点,得到的节点序列能更好地反映网络结构信息;然后,将节点序列投入到Skip-gram模型得到节点表示向量;最后,利用链路预测任务来测度表示学习性能。在4个真实网络数据集上进行了实验。在论文合作网络arXiv ASTRO-PH上与LINE和node2vec算法相比,链路预测的AUC值分别提升了8.9%和3.5%,其他数据集上也均有提升。实验结果表明,RLP-MHRW能有效提高基于Word2vec的网络表示学习算法的性能。 相似文献
7.
真实网络大多是有向的,且网络结构随时间动态变化,传统的链路预测方法大多适用于无向网络,其分析方法不能有效挖掘真实网络中的信息。针对以上问题,提出了一种基于归一化AA和LAS的时序有向的链路预测算法,该算法基于共同邻居、节点度属性及局部社团相似性,为每个链接分配时间影响因子并将其引入NALAS指标进行计算,考虑了网络有向性和网络历史结构的影响。在真实社会网络数据集上对该算法进行了仿真并与Salton、Jaccard等算法进行对比。结果表明,提出的算法与其他算法相比,预测精度得到了提高,说明该算法可以有效地在时序有向的社会网络中进行链路预测。 相似文献
8.
9.
现有的网络表示学习算法主要为基于浅层神经网络的网络表示学习和基于神经矩阵分解的网络表示学习。基于浅层神经网络的网络表示学习又被证实是分解网络结构的特征矩阵。另外,现有的大多数网络表示学习仅仅从网络的结构学习特征,即单视图的表示学习;然而,网络本身蕴含有多种视图。因此,文中提出了一种基于多视图集成的网络表示学习算法(MVENR)。该算法摈弃了神经网络的训练过程,将矩阵的信息融合和分解思想融入到网络表示学习中。另外,将网络的结构视图、连边权重视图和节点属性视图进行了有效的融合,弥补了现有网络表示学习中忽略了网络连边权重的不足,解决了基于单一视图训练时网络特征稀疏的问题。实验结果表明,所提MVENR算法的性能优于网络表示学习中部分常用的联合学习算法和基于结构的网络表示学习算法,是一种简单且高效的网络表示学习算法。 相似文献
10.
动态网络链路预测是目前复杂网络的热点研究方向,网络表示学习可以有效学习到节点的相似性,从而为链路预测提供基础.现有的动态网络表示学习方法大多先将动态网络进行离散窗口化,然后在静态网络快照图上建模,这样很难有效处理具有细粒度时间特性的动态网络.本文提出了一种可以学习动态网络中复杂的时间特性的链路预测模型,该模型使用连续时间事件序列表示动态网络,对网络中的连续时间信息和结构演化特征进行学习,并提出了基于时间注意力的信息传递机制来模拟网络中信息的扩散与聚合,最后将链路预测转化为分类问题.实验在4个真实动态网络数据集以及模拟网络上进行,并以ap和auc作为评价指标.真实网络实验结果证明该模型能够较好地学习网络演化的连续性,得到更有效的节点表示,从而提升了链路预测效果.模拟网络的实验结果表明链路预测的效果和网络模型相关,但本文模型仍可以获得较好的预测效果. 相似文献
11.
近年来,复杂网络中的链路预测问题受到越来越多的关注,链路预测的应用场景也越来越广泛,因此如何提高链路预测精度是一个重要问题。目前已提出了很多方法,其中加权相似性指标的预测方法取得了很好的效果。然而传统的加权网络链路预测方法仅考虑了链接的自然权重,忽略了链接的拓扑权重对预测精度的影响。因此,针对加权网络的链路预测,综合考虑网络中边的聚类和扩散特性并将其作为边的拓扑权重,提出了基于链接拓扑权重的WCD含权预测指标,包括WCD-CN,WCD-AA,WCD-RA和WCD-LP4个相似性指标。文中以Matlab为实验平台,在两个带权数据集(USAir,Bibble)和两个无权数据集(Pblogs,Dolphins)上进行实验,并以AUC作为评价指标。仿真结果表明,与基于自然权重的含权指标、基于簇系数的结构含权指标相比,所提算法具有更好的预测精度。 相似文献
12.
13.
链接预测是确定用户间关系的基本工具。通过相似性度量进行链路预测是一种常见的方法,提出一种基于相似度的链路预测算法,根据网络结构及拓扑特性来确定相似度,引入优化链路预测度量方法,将聚类系数作为网络结构性质。此外,并考虑共享邻域,得到较其他同类链路预测方法更好的性能。实验结果表明,提出的算法性能优于经典算法。结合在Facebook、Twitter与新浪微博等社交网络环境中的实验结果可知,SLP-CNP法较其他算法具有更优精度与效率。在未来的工作中,还可尝试在所提方法的基础上,提升在加权网络、有向网络和二部网络中的适用性。 相似文献
14.
无线传感器网络定向扩散算法改进分析 总被引:1,自引:0,他引:1
在分析和比较多种现有传感器网络路由算法的基础上,针对网络层平面路由协议定向扩散算法的特点和应用性能,分析研究了定向扩散的两种改进路由算法,表明改进后算法比原算法更加有效。 相似文献
15.
目前,复杂网络的链接挖掘问题已得到了广泛研究,而加权网络的相关研究还较少且结果不甚理想。鉴于此,提出一种新的针对加权网络的链接预测方法,对以往方法中的加权相似性度量进行改造。新方法主要基于这一假定:链接xz为强关系而链接zy为弱关系时,链路〈x,z,y〉对节点x和 y之间形成链接的贡献最低。因此,新方法中链接xz为强关系而链接zy为弱关系时,链路〈x,z,y〉对节点x和节点y之间的相似性得分S(x,y)的贡献度的削弱程度最大。在带权网络数据集USAir和NetScience上的比较实验表明,新方法在AUC指标上具有一定的优势。 相似文献