首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 90 毫秒
1.
日益增加的交通流量使得道路交通面临着严峻考验,运用现代技术手段,对短时交通流进行精准的预测,能为改善及便利道路交通管理.为此提出一种基于长短时记忆神经网络(LSTM)、门控循环单元(GRU)、栈式自编码器(SAE)以及简单循环单元(SRU)模型相结合的短时交通流预测模型——LGSS模型.实验表明LGSS组合模型的预测效...  相似文献   

2.
针对城市路网短时交通流预测受到许多复杂因素的影响,提出一种基于深度时空残差网络的路网短时交通流预测模型DST-Res Net(deep spatio-temporal residual network)。针对时空数据的两个独特属性邻近性和周期性分别设计相应的残差网络分支,通过为两个分支中相同的道路分配不同的权重动态聚合两个分支网络的输出,调整时空属性对不同路段交通流预测的影响程度,将两个残差网络的聚合结果与外部因素进行融合。通过选择RMSE和R2为模型的评价指标进行实验验证,该DST-ResNet模型相较主流的LSTM模型具有更高的有效性和可行性。  相似文献   

3.
准确、高效的交通流预测是实现交通诱导和交通控制的前提和关键。针对传统机器学习方法需要人工构造特征、无法充分提取交通流的时空特征等问题,提出一种混合预测模型,该模型结合卷积神经网络(Convolutional Neural Network,CNN)和XGBoost(Extreme Gradient Boosting)各自的优势,在网络底层使用CNN对交通流数据进行特征的自动提取和选择,并将得到的高维特征向量输入到XGBoost模型中进行预测。为验证模型有效性,取高速路段的交通流数据对CNN模型、XGBoost模型和CNN-XGBoost模型进行实验对比,结果表明,在预测精度上,CNN-XGBoost模型比CNN模型和XGBoost模型分别提高了约6%和7%,是一种有效的短时交通流预测模型。  相似文献   

4.
准确的短时交通流预测在智慧交通系统中至关重要.近年来,双向长短时记忆网络(BiLSTM)被广泛地应用于短时交通流预测中,但由其结构特点,易产生过拟合现象,从而影响预测精度.鉴于宽度学习系统(BLS)能够解决过拟合的问题,本文将深度学习与宽度学习相结合.进一步地,为减少噪声对车流量数据的干扰,引入变分模态分解(VMD)进...  相似文献   

5.
代亮  梅洋  钱超  孟芸  汪贵平 《控制与决策》2021,36(12):2937-2945
对大规模路网交通流进行准确预测,能够应用于区域交通协同控制与管理,提高路网运行效率.针对如何高精度地拟合大规模路网交通流时空分布并对其进行准确预测,提出基于梯度惩罚的Wasserstein生成对抗网络(Wasserstein generative adversarial network with gradient penalty,WGAN-GP)的大规模路网交通流预测算法.根据大规模路网交通流数据特点,为了增加模型对时间相关性和远距离空间相关性特征的抽象能力,采用残差U型网络作为生成器来增加网络深度;采用多重判别器分别从时间和空间特征来对生成数据进行判别,从而提高判别器的判别能力.所提算法能够解决判别型深度学习模型仅能针对路网整体误差最小化,而忽略各交通流观测点预测误差最小化原则的问题,能够更好地满足现实交通场景需求.实验结果表明,所提算法能够有效地学习路网交通流数据内部多因素耦合特性,具有更高的预测精度.  相似文献   

6.
基于深度学习的短时交通流预测   总被引:2,自引:0,他引:2  
针对现有预测方法未能充分揭示交通流内部的本质规律,提出了一种基于深度学习的短时交通流预测方法。该方法结合深度信念网路模型(DBN)与支持向量回归分类器(SVR)作为预测模型,利用差分去除交通流数据的趋势向,用深度信念网络模型进行交通流特征学习,在网络顶层连接支持向量回归模型进行流量预测。实际交通流数据测试结果表明:文中提出的预测模型与传统预测模型相比,具有更高的预测精度,预测性能提高了18.01%,是一种有效的交通流预测方法。  相似文献   

7.
针对短时交通流量具有复杂性、非线性等特点,提出基于粒子群算法的神经网络交叉路口短时交通流量预测方法;利用混沌粒子群算法对BP神经网络权值和阈值进行优化,克服易陷入局部极小和引起振荡效应现象,从而提高了网络的预测精度;实验仿真结果说明,与标准粒子群算法相比较,新算法可以有效提高预测精度,减少预测误差,最大绝对误差下降至12.15%,相对预测误差在10%以内的预测数据提高至57.5%,并且很好地反应了交通流的特点,是一种可行的预测方法.  相似文献   

8.
深度学习近年来被广泛应用于交通工程领域,针对大型路网中单个路段的交通流预测考虑因素单一、预测精度不高的问题,充分利用长短时记忆(LSTM)网络在时序数据处理方面的优势,结合路网交通流时空分析并运用LSTM模型进行预测。通过对路网中路段检测站点间交通流数据进行相关性计算,并设置不同阈值来选择出代表路段的编号构造原始数据矩阵,对矩阵进行压缩来增加运算效率,最后将压缩矩阵输入模型中进行预测。设置仿真对比实验,验证了提出的方法相较于其他几种模型预测准确率平均可提升11.84%,是一种高效率的交通流预测方法。  相似文献   

9.
基于组合模型的短时交通流预测   总被引:2,自引:0,他引:2  
钱伟  杨矿利  杨慧慧  徐青政 《计算机仿真》2015,32(2):175-178,193
为了提高预测精度,利用每周同一天交通流变化相似的特点,提出了一种短时交通流组合预测模型,采集每周同一天的交通流数据进行预测。组合模型包括两个子模型:BP神经网络模型、GM(1,1)模型。BP神经网络模型具有强大的非线性逼近能力,对于庞大无序的交通流数据信息具有良好的处理能力。GM(1,1)模型能够反映交通流时间序列的总体变化趋势,相对误差小。通过计算两种子模型在上一时间段的预测误差比值,确定出在下一时间段的预测中两种子模型预测结果所占的权重,然后将这两个子模型在下一时间段的预测结果进行加权求和,作为组合模型的最终预测值。实验结果表明,组合模型发挥了两种子模型各自的阶段性预测优势,是短时交通流预测的一种有效方法。  相似文献   

10.
雷斌  温乐  耿浩  李建明 《测控技术》2018,37(5):37-41
为了改善城市路网中短时交通流预测效果,提高预测精度,设计了一种基于改进的K近邻非参数回归和小波神经网络加权组合的短时交通流预测方法.针对K近邻非参数回归预测方法搜索量大、相似性差等问题,采用基于交叉口相关系数加权的欧氏距离选择K近邻值.小波变换与神经网络有机结合形成的前馈型网络,对非平稳的输入信号能够呈现出良好的时频特性和变焦能力,对短时交通流预测效果有着明显的提升.通过算例分析,说明所设计的预测方法能够获得比较精确的短时交通流预测结果.  相似文献   

11.
郑友康  王红蕾 《软件》2020,(5):72-74
准确的短时交通流量预测有利于主动交通控制和出行者的出行规划,文章提出了一种改进的长短期记忆模型(ILSTM)来对短时道路交通流量进行预测。LSTM是RNN的变体形式,在处理时间序列数据上具有优势,所以适合来预测短时交通流量,并通过仿真实验来验证所提方法的有效性,构建了以LSTM为基础的深度学习模型,与其它传统模型支持向量机(SVR),长短记忆模型(LSTM)进行了比较分析,并调整了模型的超参数以分析对模型性能的影响。  相似文献   

12.
交通流预测在智能交通领域有着重要的现实意义。由于交通流数据受多种因素影响,平稳性差、随机性强,呈现出高度非线性的特征,使得交通流预测极为困难。针对短时交通流预测准确性的要求,本文提出一种基于互补集成经验模态分解(Complete Ensemble Empirical Mode Decomposition, CEEMD),并结合卷积神经网络(Convolutional Neural Networks, CNN)和长短期记忆网络(Long Short-Term Memory, LSTM)的短时交通流预测方法。模型通过CEEMD信号分解减少噪声对交通流数据预测的影响,采用CNN、LSTM充分挖掘数据的时空特征,使得模型做出更加准确的判断,从而提高神经网络的学习效率。在真实交通流数据上进行实验验证,结果表明,本文提出的模型可以有效提高交通流预测的准确性。  相似文献   

13.
针对误差反馈循环卷积神经网络在运用到短时交通流预测时存在仅仅能接收时序误差序列,忽略交通流误差数据中隐含的空间拓扑特征,且在模型初始化时其采用的通用卷积神经网络初始化方法降低了模型训练效率的问题,本文提出一种优化的误差反馈循环卷积神经网络模型,在误差反馈循环卷积神经网络模型基础上根据预测误差数据的时空特性对误差反馈层进行结构强化,能够处理包含简单空间关系的误差序列。同时通过在模型训练的过程中分离模型产生的历史预测误差和训练误差,使得模型构建过程更加高效,加速了模型收敛速度。通过北京市四环道路交通数据的实验表明,优化的误差反馈循环卷积神经网络预测模型在预测精度、构建效率及鲁棒性上均得到有效提高。  相似文献   

14.
交通流预测是智能交通系统(ITS)的核心,其中时空特性是最主要的特征。由于不同道路之间存在复杂的空间相关性和时间依赖性,因此交通流预测成为一项具有挑战性的任务。目前,基于图卷积神经网络的预测方法在网络局部以及整体的特征感知和提取方面,仍存在优化空间。为了解决以上问题,本文提出了一种基于图神经网络的优化模型:Diffusion Mutual Convolutional Recurrent Neural Network (DMCRNN)。该模型以DCRNN为基准模型,利用相互学习策略对其进行优化。在训练过程中,两个DCRNN网络之间相互学习、相互指导,以此来增强每个网络的特征学习能力。在METR-LA和PEMS-BAY两个真实数据集上验证优化策略的有效性。结果表明,经过优化后的模型预测误差显著降低,在两个数据集上一小时的MAE分别降低了0.15和0.12,即相互学习优化策略具有较好的性能。  相似文献   

15.
丁栋  朱云龙  库涛  王亮 《计算机工程》2012,38(10):164-167
根据复杂交通网络中多个节点之间交通流相互影响的特性,提出一种基于影响模型的短时交通流预测方法。分析交通网络中交通流预测的难点,引入随机过程中影响模型的理论对其进行建模。将每个节点的交通流处理为一个隐马尔科夫过程,整个网络由多个相互交互的隐马尔科夫过程组成,采用EM算法对模型参数进行训练。实验结果表明,该方法具有较高的预测精度,可较好地显示交通网络中多个节点之间交通流的交互规律以及动态演化规律。  相似文献   

16.
基于周期性网络流量模型的流量预测   总被引:7,自引:0,他引:7  
文中使用自主开发的网络监控系统,对数据链路实施长期的测试监控。通过大量流量测试数据统计分析表明,WAN/LAN实际流量可以分为时间相关分量和时间无关分量。文中介绍了一个基于周期性网络流量模型的流量预测算法,以便对给定时刻的网络流量进行在线预测,并给出了不同预测精度下预测流量取值区间和实际流量的比较结果。  相似文献   

17.
针对实际交通流变化的不稳定性和复杂性的特点,应用交通流预测模型获取更准确的交通流信息,是智能交通领域的一个研究热点。提出一种基于小波分析与神经网络结合的预测模型。模型主要思想是通过小波多分辨率分析和Mallat算法对原始交通流数据进行平滑降噪处理,处理过程选用db10小波和软阈值去噪函数使得交通流曲线更加平滑稳定,更能真实反映交通流的真实情况;再采用激活函数为Tan-Sigmoid,训练函数为trainlm,各层神经元节点数为1-12-1的三层BP神经网络对消噪后的交通流数据进行训练,用训练好的预测模型对实际交通流信息进行预测,最后获取准确的交通流信息。实验结果表明,采用小波分析与BP神经网络结合的方法得到的预测结果平均相对误差为0.03%,最大相对误差为0.39,拟合度(EC)达到0.96。仅使用BP神经网络预测模型对交通流数据进行预测后得到的预测结果的平均相对误差为0.08%,最大相对误差为0.89%;实验对比采用BP神经网络预测模型和卡尔曼滤波、GM(1,1)预测模型对交通流的预测,BP神经网络预测模型的误差指标大大减小,拟合度大大提高,有较好的准确性和可行性,能较准确地反映交通流真实情况。而经过小波去噪与BP神经网络结合的预测模型提高了预测精度,为交通流的实时动态预警提供了更加准确真实的情况。  相似文献   

18.
基于时间特征的网络流量预测模型   总被引:1,自引:0,他引:1  
本文设计一种基于时间特征的网络流量预测模型,并采用该流量模型预测网络流量。文章提出网络流量预测误差的数学定义,根据测试实验表明,我们的流量模型具有更高的可用性,并适用实际运行的网络环境。  相似文献   

19.
一种基于贝叶斯网络模型的交通事故预测方法   总被引:5,自引:0,他引:5  
秦小虎  刘利  张颖 《计算机仿真》2005,22(11):230-232
大部分的交通事故都可以预测.有效的交通事故预测能从很大程度上减少人员伤亡和交通阻塞.贝叶斯网络是目前不确定知识和推理领域最有效的理论模型之一.该文提出了一种基于贝叶斯网络模型理论的交通事故预测方法.在综合考虑交通事故成因的基础上利用领域专家知识构建网络模型,在已有的事故数据的基础上提出基于贝叶斯法则的学习算法,并通过计算变量间的条件概率来计算事故发生的可能性,达到事故预测的目的.文章的最后,通过历史数据进行仿真实验,对仿真结果和该模型的适用范围进行了分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号