首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
为了进一步提高密集人群计数任务的计数精度,提出一种利用深度语义特征逐步降维重建的密集人群计数网络。前端采用深度卷积网络得到基本的深度语义特征;后端采用基于空洞卷积的多尺度特征融合块来丰富深度语义特征。通过语义重建块与上采样相结合,在进行多次降维重建以后生成与原始图像相同分辨率的人群密度图,并由此得到人群数量。将该模型在公开的数据集ShanghaiTech、UCF_CC_50、UCF-QNRF上与历年的主要方法进行对比,该方法无论是在人群计数精度还是密度图质量上都体现出了明显的优势,同时在多个数据上的验证实验表明模型具有较好的鲁棒性。  相似文献   

2.
为分析商业区人群流动情况,或避免人群踩踏等公共事件的发生,通常采用人群计数方法统计监控图像中的人数信息,从而达到提前预警的效果。受目标遮挡、背景干扰、多尺度变化等因素的影响,现有的人群计数方法在统计人数信息的过程中存在误算或漏算的问题,导致准确率降低。提出一种基于注意力机制与上下文密度图融合的人群计数网络CADMFNet。以VGG16的部分卷积层作为前端网络,通过引入上采样融合模块对输入的特征图进行上下文特征融合,将不同膨胀率的膨胀卷积作为后端网络,生成高质量的中间密度图。在此基础上,采用上下文注意力模块融合不同层级的中间密度图,获得精细的人群密度图。实验结果表明,该网络在Mall数据集上的平均绝对误差和均方根误差分别为1.31和1.59,相比CSRNet、MCNN等网络,能够有效提高计数的准确度,并且具有较优的鲁棒性。  相似文献   

3.
提出了一种混合卷积神经网络用于人群数量的感知计算,在高度密集的场景中可以准确地预测人群密度图。模型仅由两个部分组成:前端为扩张卷积神经网络提取二维特征;后端采用分数步长卷积神经网络降低下采样中的信息损失。为了验证和分析算法性能,模型设计基于当前较为流行的Shanghai Tech数据集,使用回归问题的评价指标,即平均绝对误差(MAE)和均方误差(MSE)作为评估算法性能的标准。在Shanghai Tech(MAE=100.8)、UCF_CC_50(MAE=305.3)与WorldExpo’10数据集上进行测试,实验表明模型在密集场景下较以往的方法有效降低了MAE和MSE,提高了密集人群计数的准确率。  相似文献   

4.
陆金刚  张莉 《计算机应用》2019,39(12):3445-3449
针对尺度和视角变化导致的监控视频和图像中的人数估计性能差的问题,提出了一种基于多尺度多列卷积神经网络(MsMCNN)的密集人群计数模型。在使用MsMCNN进行特征提取之前,使用高斯滤波器对数据集进行处理得到图像的真实密度图,并且对数据集进行数据增强。MsMCNN以多列卷积神经网络的结构为主干,首先从具有多尺度的多个列中提取特征图;然后,用MsMCNN在同一列上连接具有相同分辨率的特征图,以生成图像的估计密度图;最后,对估计密度图进行积分来完成人群计数的任务。为了验证所提模型的有效性,在Shanghaitech数据集和UCF_CC_50数据集上进行了实验,与经典模型Crowdnet、多列卷积神经网络(MCNN)、级联多任务学习(CMTL)方法、尺度自适应卷积神经网络(SaCNN)相比,所提模型在Shanghaitech数据集Part_A和UCF_CC_50数据集上平均绝对误差(MAE)分别至少减小了10.6和24.5,均方误差(MSE)分别至少减小了1.8和29.3;在Shanghaitech数据集Part_B上也取得了较好的结果。MsMCNN更注重特征提取过程中的浅层特征的结合以及多尺度特征的结合,可以有效减少尺度和视角变化带来的精确度偏低的影响,提升人群计数的性能。  相似文献   

5.
为解决单幅图像中的人群遮挡和尺度变化问题,提出一种基于多列卷积神经网络的人群计数算法。利用具有不同尺寸感受野的卷积神经网络(CNN)和特征注意力模块自适应提取多尺度人群特征,引入可变形卷积增强CNN网络空间几何形变学习能力并优化特征图,从而生成高质量的密度图。Shanghai Tech和UCF_CC_50数据集上的实验结果表明,该算法能学习输入图和人群密度图之间的映射关系,且计数准确性高、鲁棒性强。  相似文献   

6.
基于卷积神经网络的立体匹配方法未充分利用图像中各个层级的特征图信息,造成对图像在不适定区域的特征提取能力较差。提出一种融合多尺度与多层级特征的立体匹配方法。通过在双塔结构卷积神经网络模型的前端设计一个池化金字塔层,提取图像的多尺度低层结构特征。在该网络模型的后端融合最后三层网络的高级语义特征来提取图像特征,并对图像特征进行相似性度量后输出视差图。在KITTI 2015数据集上的实验结果表明,与LUO和Anita方法相比,该方法的像素误差精度分别由14.65%、8.30%降至8.02%,且可得到细节信息更好的视差图。  相似文献   

7.
针对背景复杂、遮挡、人群分布不均等人群计数常见问题,提出了一种结合联合损失的空间-通道双注意力机制卷积神经网络模型(joint loss-based space-channel dual attention network, JL-SCDANet).该网络前端进行图像粗粒度特征提取,中间加入空间注意力机制以及通道注意力机制突出图像重点区域,后端使用可加大感受野且不丢失图像分辨率的空洞卷积提取深层二维特征.此外,该模型结合联合损失函数进行训练,以增强模型的鲁棒性.为了验证模型的改进效果,在3个公共数据集(ShanghaiTech Part B、mall和UCF_CC_50)上分别进行了对比实验,在ShanghaiTech Part B数据集中平均绝对误差(MAE)和均方误差(MSE)分别达到了8.13和13.13;在mall数据集中MAE、MSE达到了1.78和2.28;在UCF_CC_50数据集中MAE、MSE分别达到了182.12和210.24,实验结果证明了该网络在提高人数统计准确率上的有效性.  相似文献   

8.
人群计数广泛应用于公共安防、视频监控等领域,但由于目标遮挡、背景干扰以及人群尺度变化等因素的影响,人群计数模型的准确率有所降低。基于深度学习卷积神经网络架构,提出了一种基于多尺度感知和图像关联的人群计数方法。其中,多尺度感知模型包括初级特征提取网络、多尺度特征提取模块、特征融合模块和一个后段架构用来提取图像的多尺度特征,从而适应尺度的变化;而图像关联模型使用特征关联模块和融合模块将输入图像与相干图像进行联系,通过学习图像之间的深层关联性来提升预测密度图的质量。在ShanghaiTech Part_A、Part_B和UCF_CC_50等公开数据集上的实验结果表明,提出的方法在MAE、RMSE和SSIM三项指标上均有较好性能。  相似文献   

9.
李佳倩  严华 《计算机科学》2021,48(6):118-124
人群计数是计算机视觉和机器学习领域中一个极具挑战性的课题。由于人群尺度变化和场景遮挡等现象会导致计数准确度不高,因此提出了一种基于跨列特征融合的人群计数方法(Cross-column Features Fusion Network, CCFNet)。该方法融合了来自多列不同接受域的特征,并且结合了拥有互质扩张率的空洞卷积,因此不仅能够增大感受野,还能保证信息的连续性,从而更好地适应人群规模的巨大变化;同时引入注意力模型引导网络聚焦于图片中的头部位置,根据注意力分数图为不同位置分配不同的权重,突出人群而弱化背景,最终得到高质量的密度图。在当前主流的人群计数数据集上的对比实验中,所提方法的平均绝对误差(Mean Absolute Error, MAE)在ShanghaiTech数据集的A,B子集上分别达到了63.2和8.9,在UCFCC50数据集上达到了222.1,在WorldExpo’10数据集上达到了7.1。这表明所提方法具有更好的计数准确度,能够很好地适应不同的场景,尤其对于尺度变化较大的场景,效果优于以往的大多数算法。  相似文献   

10.
邓远志  胡钢 《测控技术》2020,39(6):108-114
轨道交通作为城市中主要的运输方式之一,客流量大,易因拥挤而引发人群骚乱、踩踏等安全事故,并引发一系列公共安全问题,造成重大人员伤亡和财产损失。利用监控图像及其相应标注数据行模型监督训练,训练可融合高低阶特征图的卷积神经网络,对图像中不同尺度人群的底层特征高分辨率和高层特征的高语义信息进行融合,达到可预测多尺度图像的人群密度图和估计人群人数的目的。结合几何适应高斯核以及人群透视图,生成的人群密度图能表达三维真实场景中的人群密度分布情况。通过增广训练数据集,增强网络泛化能力,提高网络的鲁棒性。所提出的深度特征金字塔卷积神经网络模型能够提高人群密度估计的准确率,便于人群预警管理系统尽早发现拥挤踩踏事故的端倪,给有关部门采取相关措施提供帮助。  相似文献   

11.
人群计数技术以估计人群图片或视频中的人数为目标,可以有效预防人群踩踏事故的发生,广泛应用于安防预警、城市规划及大型集会管理等领域。然而,由于人群尺度变化、背景干扰、人群分布不均、遮挡和透视效应等因素的影响,单幅图片的人群计数仍是一项非常具有挑战性的任务。针对人群计数中多尺度变化和背景干扰问题,提出一种抗背景干扰的多尺度人群计数算法。以VGG16网络结构为基础,引入特征金字塔构建多尺度特征融合骨干网络解决人群多尺度变化问题,设计Double-Head-CC结构对融合后的特征图进行前景背景分割和密度图预测以抑制背景干扰。基于密度图的局部相关性和多任务学习,定义多重损失函数和多任务联合损失函数进行网络优化。在ShanghaiTech、UCF-QNRF和JHU-CROWD++数据集上进行训练和评测,实验结果表明,该算法能够很好地预测人群密度分布和人群数量,具有较高的准确性,且鲁棒性强、泛化性能良好。  相似文献   

12.
在智能监控领域,实现人群计数具有重要价值,针对人群尺度不一、人群密度分布不均及遮挡等问题,提出一种多尺度多任务卷积神经网络(MMCNN)进行人群计数的方法。首先提出一种新颖的自适应人形核生成密度图描述人群信息,消除人群遮挡影响;其次通过构建多尺度卷积神经网络解决人群尺度不一问题,以多任务学习机制同时估计密度图及人群密度等级,解决人群分布不均问题;最后设计一种加权损失函数,提高人群计数准确率。在UCF_CC_50和World Expo'10数据库上进行了评估,验证了自适应人形核的有效性。实验结果表明:所提算法比Sindagi等的方法(SINDAGI V A,PATEL V M.CNN-based cascaded multi-task learning of high-level prior and density estimation for crowd counting.Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance.Piscataway,NJ:IEEE,2017:1-6)在UCF_CC_50数据库上平均绝对误差(MAE)数值和均方误差(MSE)数值分别降低约1.7和45;与Zhang等的方法(ZHANG Y,ZHOU D,CHEN S,et al.Single-image crowd counting via multi-column convolutional neural network.Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2016:589-597)相比,在World Expo'10数据库上所提算法的MAE值降低约1.5,且在真实公共汽车数据库上仅0~3人的计数误差,表明其实用性较强。  相似文献   

13.
现实场景中人群尺度的巨大差异给密集人群计数算法带来了巨大的挑战,因此提出一种基于尺度融合的密集人群计数算法.首先对密度图构建算法进行优化,利用多个头部检测器获取稀疏人群的部分头部尺度,并用径向基差值进行补全,在人群密集区域辅之以距离自适应的人群密度图生成算法,生成更为精确的人群密度图.其次利用移动翻转瓶颈卷积模块设计尺度融合的人群密度图回归神经网络,并加入膨胀卷积模块进一步提升人体头部边缘特征提取能力.最后,通过将人群区域和非人群区域进行区分对人群密度图回归神经网络损失函数进行优化.在实验部分,将该算法在多个数据集上与多个同类算法进行了充分的对比实验与消融实验,实验结果表明提出的方法能够显著提升密集人群计数算法的准确性.  相似文献   

14.
Wang  Weixing  Liu  Quanli  Wang  Wei 《Applied Intelligence》2022,52(2):1825-1837

Statistics on crowds in crowded scenes can reflect the density level of crowds and provide safety warnings. This is a laborious task if conducted manually. In recent years, automated crowd counting has received extensive attention in the computer vision field. However, this task is still challenging mainly due to the serious occlusion in crowds and large appearance variations caused by the viewing angles of cameras. To overcome these difficulties, a pyramid-dilated deep convolutional neural network for accurate crowd counting called PDD-CNN is proposed. PDD-CNN is based on a VGG-16 network that is designed to generate dense attribute feature maps from an image with an arbitrary size or resolution. Then, two pyramid dilated modules are adopted, each consisting of four parallel dilated convolutional layers with different rates and a parallel average pooling layer to capture the multiscale features. Finally, three cascading dilated convolutions are used to regress the density map and perform accurate count estimation. In addition, a novel training loss, combining the Euclidean loss with the structural similarity loss, is employed to attenuate the blurry effects of density map estimation. The experimental results on three datasets (ShanghaiTech, UCF_CC_50, and UCF-QNRF) demonstrate that the proposed PDD-CNN produces high-quality density maps and achieves a good counting performance.

  相似文献   

15.
本文目标是根据任意视角、任意人群密度的图像信息,估计真实场景中的人群密度。但三维空间景物投影到二维空间时会造成透视失真和人群遮挡问题,导致难以区分个体与个体、个体与背景的差异。为此,提出一种灵活高效的可伸缩模块化卷积神经网络(CNN)的架构,允许直接输入任意大小和分辨率的图像,不额外计算视角变化信息,通过生成密度图的方式来估计人群数量。架构的每个模块采用不同卷积核的多列结构,可以拟合不同远近的个体信息;并 结合前后两层的特征信息,减少了梯度消失造成的精度下降损失。实验证明,在ShanghaiTech PartA和PartB数据集上,所提方法的准确率比之前最好的MCNN方法分别提高了14.58%,40.53%,均方根误差分别降低了23.89%,33.90%。  相似文献   

16.
In recent years, crowd counting in still images has attracted many research interests due to its applications in public safety. However, it remains a challenging task for reasons of perspective and scale variations. In this paper, we propose an effective Skip-connection Convolutional Neural Network (SCNN) for crowd counting to overcome the issue of scale variations. The proposed SCNN architecture consists of several multi-scale units to extract multi-scale features. Each multi-scale unit including three convolutional layers builds connections between the input and each convolutional layer. In addition, we propose a scale-related training method to improve the accuracy and robustness of crowd counting. We evaluate our method on three crowd counting benchmarks. Experimental results verify the efficiency of the proposed method, and it achieves superior performance compared with other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号