首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为解决600 MW示范快堆(CFR600)事故分析和工况设计中的实际问题,自主开发了钠冷快堆系统程序FR-Sdaso,其建模范围包括堆芯、一回路、二回路、三回路、四回路和事故余热排出系统,主要物理模型包括点堆模型、单通道堆芯热工模型、多区钠池模型、四区蒸汽发生器模型等核岛设备或部件分析模型,汽轮机、凝汽器、给水加热器、除氧器等常规岛设备采用集总参数模型,泵、阀门、管道及控制体等采用通用模型。对程序进行了初步验证,结果表明,FR-Sdaso程序可用于分析全厂瞬态工况及超功率、失流、失热阱等典型事故过程。目前,FR-Sdaso程序已用于CFR600的设计和安全分析。  相似文献   

2.
系统分析程序是开展反应堆安全分析的重要工具之一,也可用于开展系统瞬态实验过程的分析。法国凤凰堆(Phenix)在停运之前开展的自然循环实验是钠冷快堆领域非常重要的系统瞬态实验,为研究钠冷快堆的瞬态特点提供了很好的参考。为分析此实验过程,利用自主研发的系统分析程序FR-Sdaso对凤凰堆进行建模,对其自然循环实验开展计算分析,并将主要参数的计算值与实验值进行了对比分析。结果表明,FR-Sdaso可较好地模拟此实验的瞬态过程,可用于开展钠冷快堆此类瞬态的安全分析。  相似文献   

3.
针对快堆结构,自主开发了适用于CFR600快堆热工水力设计及优化的程序,并进行了相关测试验证。结果表明,该程序具备快堆全堆图形建模、精细化子通道自动划分、考虑组件间换热的热工水力分析以及流量自动分区优化等功能,可为后续自主知识产权的商业快堆技术研发提供支持。  相似文献   

4.
钠冷快堆采用冷阱作为净化钠中杂质的设备,目前中国实验快堆(CEFR)的冷阱净化杂质能力不能满足中国示范快堆(CFR600)各钠回路中杂质的净化需求。本文通过开展高性能冷阱净化能力试验,获得了不同温度下冷阱的溶解速率、净化速率、捕集能力和杂质容量。这些性能指标均达到了预期值,其捕集能力是CEFR一回路冷阱的2.33倍,是二回路冷阱的1.91倍。试验研究结果为CFR600冷阱结构的优化设计及冷阱性能分析软件的开发提供了依据,满足了CFR600一、二回路和乏组件转换桶钠净化系统关键设备的需求,实现了自主研发的高性能冷阱在CFR600工程上的成功应用。  相似文献   

5.
钠冷快堆通过采用模块式蒸汽发生器的设计方案以提高核电厂的负荷因子。核电厂运行中若发生丧失蒸汽发生器模块事件,核电厂工况将发生变化,应进行适当的调节,调节的目标工况可通过设计与研究给出。本工作对某典型池式钠冷快堆丧失1个蒸汽发生器模块后的最佳工况进行研究,主要研究内容包括对其主热传输系统进行建模,开展主热参数匹配计算,根据相关运行限值来筛选方案并分析关键参数,最终给出较为合适的运行工况。本工作为钠冷快堆在丧失蒸汽发生器模块后的工况设计提供了重要依据。  相似文献   

6.
The sodium-cooled fast reactor container is an integrated pool structure composed of numerous internal components and complex structure. The anisotropy is obvious and the deep penetration problem is serious in the process of neutron transport from core to biological shielding. The calculation of three-dimensional SN method in large scale is the bottleneck restricting in the design of fast reactor shielding. By combining with high performance computing technology, the parallel computing scheme is used to solve the anisotropic three-dimensional deep penetration shielding calculation in the fast reactor. In this paper, the China Demonstration Fast Reactor (CFR600) reactor block was taken as the research object. Using JSNT-CFR code, the neutron flux rate, photon flux rate, and dose rate in the reactor block were calculated in detail. The calculation results were compared with those of the existing two-dimensional code. The results show that combining the traditional shielding calculation method with high performance computing can meet the requirements of CFR600 reactor block shielding calculation accuracy, and obtain a more comprehensive three-dimensional display effect. It can solve the problem of shielding calculation of complex problems such as complex model and particle penetration depth. It has obvious advantages and provides strong support for the large sodium-cooled fast reactor shielding design.  相似文献   

7.
钠冷快堆堆容器是一体化的池式结构,由众多堆内构件组成且结构复杂,堆芯到生物屏蔽外中子输运过程中各向异性明显且深穿透问题严重,大尺度范围下三维SN方法计算是制约快堆屏蔽设计的瓶颈。通过将三维SN程序与高性能计算技术相结合,采用并行计算方法可解决快堆堆本体内各向异性的三维深穿透屏蔽问题。本文以中国示范快堆(CFR600)堆本体为研究对象,采用JSNT-CFR程序详细计算了堆本体内的中子注量率、光子注量率、剂量率,并将计算结果与已有的二维程序设计结果进行比较。结果表明,将传统屏蔽计算方法与高性能计算相结合,能满足CFR600堆本体屏蔽计算精度要求,获得更为全面的三维展示效果,在计算模型复杂、粒子穿透深度等复杂问题的屏蔽计算上具有较明显的优势,为大型钠冷快堆屏蔽设计提供有力支撑。  相似文献   

8.
针对钠冷快堆二回路系统的具体结构和运行特点,对中间热交换器、直流蒸汽发生器、钠缓冲罐以及泵、管道等设备和部件建立模型,采用FORTRAN语言自主编制了二回路系统热工水力瞬态分析程序SELTAC。利用中国实验快堆的停堆试验数据对所编制程序进行了初步验证。结果表明,程序计算值与试验值趋势一致,最大相对偏差不超过4.34%,吻合程度较好。将验证后的程序与一回路系统程序耦合,分析了某600 MW钠冷快堆在主热传输系统保持排热能力时的紧急停堆工况,得到了二回路系统的瞬态特性,为大型商用快堆电站的设计提供了参考。  相似文献   

9.
反应堆停堆后的余热导出是反应堆的重要安全功能之一,停堆初期余热由裂变功率和衰变热构成,停堆后期余热主要取决于衰变热。本文开发了应用于钠冷快堆系统分析程序FR-Sdaso的衰变热计算模型,该模型可考虑裂变功率和功率历史的影响。通过与ANSI/ANS-5.1-2005标准和SAS4A/SASYS-1程序对比进行了模型验证。FR-Sdaso程序的计算结果与ANSI/ANS-5.1-2005标准的最大相对偏差约为0.1%,与SAS4A/SASYS-1的最大相对偏差在10-8量级,初步证明了所开发模型的正确性。最后,基于中国实验快堆的设计数据,分析了紧急停堆过程中裂变功率对衰变热的影响,结果表明,忽略裂变功率的影响导致衰变热的最大相对偏差约-7%,出现在停堆初期。因此,计算停堆初期衰变热时应考虑裂变功率的影响。  相似文献   

10.
An advanced integral pressurized water reactor (PWR) of a small size (330 MWt) is being developed by the Korea Atomic Energy Research Institute (KAERI). The purposes of the reactor are a sea water desalination and an electricity generation. To enhance its safety, many advanced design concepts are introduced such as a passive residual removal system and a low power density core. For the safety validation of the designed reactor, a system analysis code named TASS/SMR, was developed. TASS/SMR code uses a one dimensional node/path modeling for the thermal hydraulic calculation and point kinetics for the core power calculation. The code also has specific models for the developed integral reactor, such as a helical tube heat transfer model and a passive residual heat transfer model. One of the important models for the safety or performance calculation is the core heat transfer model. The core heat transfer model of TASS/SMR was developed to meet the requirements of the 10 CFR 50 appendix K EM model as well as the realistic models. The developed model was validated with experimental data. The results show that the model predicts the heat transfer phenomena in the reactor core with a reasonable conservatism.  相似文献   

11.
为验证计算流体动力学(CFD)方法在钠冷快堆失流事故模拟计算中的可靠性和可行性,针对快中子通量实验堆(FFTF),建立了包含冷池、热池、堆芯在内的全三维模型,其中堆芯组件简化为多孔介质模型,堆芯保留了盒间特征,各类隔板简化为无厚度面。失流事故下主要参数计算结果与实验数据的对比表明,CFD方法能有效捕捉冷池、热池以及盒间复杂的流动换热现象,堆芯最热组件的位置在瞬态过程发生了变化,热管段出口温度与实验值符合良好,装有温度测点的组件出口温度模拟值较实验值低。CFD方法仍需针对组件盒间进行相应的模型开发和验证,此外还需进行大量全堆级别的实验验证,以保证计算结果的合理性。  相似文献   

12.
A natural circulation evaluation methodology has been developed to ensure the safety of a sodium-cooled fast reactor (SFR) of 1500 MW adopting the natural circulation decay heat removal system (NC-DHRS). The methodology consists of a one-dimensional safety analysis which can evaluate the core hot spot temperature taking into account the temperature flattening effect in the core, a three-dimensional fluid flow analysis which can evaluate the thermal-hydraulics for local convections and thermal stratifications in the primary system and DHRS, and a statistical safety evaluation method for the hot spot temperature in the core. The safety analysis method and the three-dimensional analysis method have been validated using results of a 1/10 scaled water test simulating the primary system of the SFR and a sodium test simulating a part of the primary system and the DHRS with about a 1/7 scale, and the applicability of the safety analysis for the SFR has been confirmed by comparing with the three-dimensional analysis adopting the turbulence model. Finally, a statistical safety evaluation has been performed for the SFR using the safety analysis method.  相似文献   

13.
The gas-cooled fast reactor (GFR) is one of the six reactor concepts selected in the frame of the Generation IV initiative. The most significant GFR option is the use of a helium high temperature primary coolant. The helium option is very attractive (chemical inertness, neutron transparency, etc.) but it leads to very specific thermal-hydraulic issues.As far as the reactor core design is concerned, a ceramic fuel concept with a good thermal conductivity has been chosen. The main requirement is to obtain an average exit core temperature of 850 °C (energy conversion efficiency) with a maximum fuel temperature of about 1200 °C and with a low core pressure drop (in order to ease the decay heat removal). The main core characteristics have been determined for two reactor powers: a medium one (600 MWth) and a large one (2400 MWth). For various reasons, this latter became the CEA reference choice. A consistent set of core parameters has been determined taking into account the different constraints including the thermal-hydraulics. The reference arrangement proposed is based on plate fuel elements.A significant issue for the GFR is the decay heat removal. An innovative approach has been chosen in case of loss of coolant accidents (LOCAs). A “guard containment” enclosing the primary system is used to maintain a medium gas pressure (10 bar) in order to remove the decay heat by low power forced convection systems in the short term and natural convection systems in the long term. This guard containment is not pressurized during normal operations and can be a metallic structure.As far as the energy conversion system is concerned, an indirect-combined cycle has been chosen. The significant advantages of this choice are: a moderate core inlet temperature (400 °C instead of 480 °C for the direct cycle) and an attractive compactness of the primary system (facilitating the guard containment design).Due to the novelty of these options, a significant effort of components pre-sizing and design calculations has been achieved. Following this effort, a CATHARE model of the reactor system has been made and the calculation of the reactor steady-state confirms the consistency of the overall system pre-sizing. This model has been used for a first transient calculation. Other types of transients have to be analyzed, however, it is thought that the proposed GFR design can reach the safety requirements of Generation IV systems.  相似文献   

14.
A natural circulation evaluation methodology has been developed to insure safety of a sodium cooled fast reactor (SFR) of 1500 MWe adopting a natural circulation decay heat removal system (NC-DHRS). The methodology consists of a one-dimensional safety analysis which can be applied to safety evaluation for SFR licensing taking into account the temperature flattening effect due to buoyancy force in the core, and a three-dimensional fluid flow analysis which can evaluate thermal-hydraulics for local convection and thermal stratification in the primary system and DHRSs. The one-dimensional safety analysis method and the three-dimensional fluid flow analysis method have been validated using the test results of a water test apparatus and a sodium test loop for some typical transient events selected from the design basis events of the SFR. Finally, it has been confirmed that a good agreement between the test results and analysis results has been obtained, and reliability of each method has been demonstrated.  相似文献   

15.
In the task of destroying the light water reactor (LWR) transuranics (TRUs), we consider the concept of a synergistic combination of a deep-burn (DB) gas-cooled reactor followed by a sodium-cooled fast reactor (SFR), as an alternative way to the direct feeding of the LWR TRUs to the SFR. In the synergy concept, TRUs from LWR are first deeply incinerated in a graphite-moderated DB-MHR (modular helium reactor) and then the spent fuels of DB-MHR are recycled into the closed-cycle SFR. The DB-MHR core is 100% TRU-loaded and a deep-burning (50–65%) is achieved in a safe manner (as discussed in our previous work). In this analysis, the SFR fuel cycle is closed with a pyro-processing technology to minimize the waste stream to a final repository. Neutronic characteristics of the SFR core in the MHR–SFR synergy have been evaluated from the core physics point of view. Also, we have compared core characteristics of the synergy SFR with those of a stand-alone SFR transuranic burner. For a consistent comparison, the two SFRs are designed to have the same TRU consumption rate of ∼250 kg/GW EFPY that corresponds to the TRU discharge rate from three 600 MW DB-MHRs. The results of our work show that the synergy SFR, fed with TRUs from DB-MHR, has a much smaller burnup reactivity swing, a slightly greater delayed neutron fraction (both positive features) but also a higher sodium void worth and a less negative Doppler coefficients than the conventional SFR, fed with TRUs directly from the LWRs. In addition, several design measures have been considered to reduce the sodium void worth in the synergy SFR core.  相似文献   

16.
与安全裕量有关的研究一直是反应堆安全设计与安全分析的重点和难点问题。本文针对池式示范快堆CFR600的设计特点,对主热传输系统中的重要现象进行了分析,并建立了最佳估算模型,基于Wilks方法对CFR600一回路主管道断裂事故进行了不确定性量化计算。最佳估算分析结果表明,CFR600在一回路主管道断裂事故下,包壳最高温度95%/95%上限为851?6 ℃,相较于保守分析结果具有约91?8 ℃裕量,低于包壳破损验收准则。  相似文献   

17.
The accident categories of severe accidents (SAs) for prototype sodium-cooled fast reactor (SFR) which need proper measures were investigated through the internal event probabilistic risk assessment (PRA) and event tree analysis for the external event and six accident categories, unprotected loss of flow (ULOF), unprotected transient over power (UTOP), unprotected loss of heat sink (ULOHS), loss of reactor sodium level (LORL), protected loss of heat sink (PLOHS) and station blackout (SBO), were identified. Fundamental safety strategy against these accidents is studied and clearly stated considering the characteristics and existing accident measures of prototype SFR, and concrete measures based on this safety strategy are investigated and organized. The sufficiency of these SA measures is confirmed by comparing the evaluated core damage frequency (CDF) and containment failure frequency (CFF) to the target value, 1×10?5 and 1×10?6 per plant operating year, respectively, which were selected based on the IAEA's safety target. However, the target value of CDF and CFF should be satisfied considering all the SAs caused by both internal and external events. External event PRA for prototype SFR is now under evaluation and we set out to satisfy the target value of CDF and CFF considering both internal and external events.  相似文献   

18.
本文为计算和分析钠冷快堆自然循环组件的热工水力特性,开发了钠冷快堆堆芯自然循环冷却组件子通道分析程序。基于61棒单组件模型,通过将本程序的结果与COBRA程序进行比较,验证了钠冷快堆堆芯自然循环冷却组件子通道分析程序对自然循环冷却组件的适用性。基于多盒组件模型,初步验证了本程序具备自然循环冷却组件的流量分配和盒间换热计算的功能。本程序能为池式快堆自然循环冷却组件提供有效的设计和分析工具。  相似文献   

19.
The most dangerous beyond design basis accidents for RBMK reactors, leading to the worst consequences, are related to the loss of long-term heat removal from the core. Due to a specific design of RBMK, there are a few possibilities for heat removal from reactor core by non-regular means: removal of heat from graphite stack by reactor gas circuit, removal of heat from reactor core using control rods cooling circuit, depressurisation of reactor cooling system, supply of water into cooling system from low pressure water sources, etc. This paper presents the analysis of such heat removal by employing RELAP5, RELAP5-3D and RELAP/SCDAPSIM codes. The analysis was performed for Ignalina nuclear power plant with RBMK-1500 reactor. The analysis of result shows that the restoration of water supply into control rod channels enables to remove 10-30 MW of the generated heat from the reactor core. This amount of removed heat is comparable with reactor decay heat in long-term period and allows to slowdown the core heat-up process. However, the injection of water to reactor cooling system is considered as main strategy, which should be considered in RBMK-1500 accident management procedure.  相似文献   

20.
The reactor refuelling system provides the means of transporting, storing, and handling reactor core subassemblies. The system consists of the facilities and equipment needed to accomplish the scheduled refuelling operations. The choice of a FHS impacts directly on the general design of the reactor vessel (primary vessel, storage, and final cooling before going to reprocessing), its construction cost, and its availability factor. Fuel handling design must take into account various items and in particular operating strategies such as core design and management and core configuration. Moreover, the FHS will have to cope with safety assessments: a permanent cooling strategy to prevent fuel clad rupture, plus provisions to handle short-cooled fuel and criteria to ensure safety during handling. In addition, the handling and elimination of residual sodium must be investigated; it implies specific cleaning treatment to prevent chemical risks such as corrosion or excess hydrogen production. The objective of this study is to identify the challenges of a SFR fuel handling system. It will then present the range of technical options incorporating innovative technologies under development to answer the GENERATION IV SFR requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号