共查询到19条相似文献,搜索用时 62 毫秒
1.
描述了一个基于依存关系的语义角色标注系统,该系统把依存关系作为语义角色标注的基本单元。通过手工或自动标注出来的依存关系,构造出依存关系树,并从树上抽取特征。用最大熵模型对句中谓词的语义角色进行识别和分类。为了消除不必要的结构化信息,在预处理阶段,依存关系树经过了Xue的剪枝算法处理。通过特征工程,丰富的特征及其组合被应用于系统。最终使用 CoNLL 2008 shared task提供的数据作为训练、开发和测试集,使用手工标注的依存关系,F1值达到了86.25%;使用MSTParser自动产生的依存关系,F1值达到了81.66%。 相似文献
2.
中文名词性谓词语义角色标注 总被引:2,自引:0,他引:2
研究了中文名词性谓词的语义角色标注(semantic role labeling,简称SRL).在使用传统动词性谓词SRL相关特征的基础上,进一步提出了名词性谓词SRL相关的特征集.此外,探索了中文动词性谓词SRL对中文名词性谓词SRL的影响,并且联合谓词自动识别实现了全自动的中文名词性谓词SRL.在中文NomBank上的实验结果表明,中文动词性谓词的SRL合理使用能够大幅度提高中文名词性谓词的SRL性能;基于正确句法树和正确谓词识别,中文名词性谓词的SRL性能F1值达到了72.67,大大优于目前国内外的同类系统;基于自动句法树和自动谓词识别,性能F1值为55.14. 相似文献
3.
4.
5.
神经机器翻译由于无法完全学习源端单词语义信息,往往造成翻译结果中存在着大量的单词翻译错误。该文提出了一种融入单词翻译用以增强源端信息的神经机器翻译方法。首先使用字典方法找到每个源端单词对应的目标端翻译,然后提出并比较两种不同的方式,用以融合源端单词及其翻译信息: ①Factored 编码器: 单词及其翻译信息直接相加; ②Gated 编码器: 通过门机制控制单词翻译信息的输入。基于目前性能最优的基于自注意力机制的神经机器翻译框架Transformer,在中英翻译任务的实验结果表明,与基准系统相比,该文提出的两种融合源端单词译文的方式均能显著提高翻译性能,BLEU值获得了0.81个点的提升。 相似文献
6.
语义角色标注中特征优化组合研究 总被引:2,自引:0,他引:2
特征决定着语义角色标注的性能,但并非特征越多性能越高.因此,如何优化组合这些特征就显得非常重要.选取了当前语义角色标注系统中常用的56个特征,按其贡献进行了优化组合实验.在正确的句法分析上取得了91.22%的语义角色分类精确率,在自动句法分析上语义角色标注F1值达到了78.07%.实验表明提高性能并不需要很多特征,关键在于特征的优化组合;同时在句法分析中起重要作用的谓词和中心词特征在语义角色标中也发挥了重要作用. 相似文献
7.
本文介绍了作者在 IBM—PC/XT 机上采用语义分析方法实现的英汉机器翻译系统。该系统是单向、全自动翻译系统,系统由总控,字典维护、字典查询、分析树生成、转换生成五个模块,全部程序用 Turbo—Prolog 逻辑程序设计语言编写。文章主要介绍了作者在介词短语语义分析方面的一些工作。 相似文献
8.
9.
语义角色对自然语言的语义理解和分析有着重要的作用,其自动标注技术依赖良好的语义角色标注训练数据集。目前已有的大部分语义角色数据集在语义角色的标注上都不够精确甚至粗糙,不利于语义解析和知识抽取等任务。为了满足细粒度的语义分析,该文通过对实际语料的考察,提出了一种改进的汉语语义角色分类体系。在此基础上,以只有一个中枢语义角色的语料作为研究对象,提出了一种基于半自动方法的细粒度的汉语语义角色数据集构建方法,并构建了一个实用的语义角色数据集。截至目前,该工程一共完成了9 550条汉语语句的语义角色标注,其中含有9 423个中枢语义角色,29 142个主要周边语义角色,3 745个辅助周边语义角色,172条语句被进行了双重语义角色标注,以及104条语句被进行了不确定语义事件的语义角色标注。我们采用Bi-LSTM+CRF的基线模型在构建好的汉语语义角色数据集和公开的Chinese Proposition Bank数据集进行了关于主要周边语义角色的基准实验。实验表明,这两个语义角色数据集在主要周边语义角色自动识别方面存在差异,并且为提高主要周边语义角色的识别准确率提供了依据。 相似文献
10.
随着人工智能和中文信息处理技术的迅猛发展,自然语言处理相关研究已逐步深入到语义理解层次上,而中文语义角色标注则是语义理解领域的核心技术。在统计机器学习仍占主流的中文信息处理领域,传统的标注方法对句子的句法及语义的解析程度依赖较大,因而标注准确率受限较大,已无法满足当前需求。针对上述问题,对基于Bi-LSTM的中文语义角色标注基础模型进行了改进研究,在模型后处理阶段结合了Max pooling技术,训练时融入了词法和句式等多层次的语言学特征,以实现对原有标注模型的深入改进。通过多组实验论证,结合语言学辅助分析,提出针对性的改进方法从而使模型标注准确率得到了显著提升,证明了结合Max pooling技术的Bi-LSTM语义角色标注模型中融入相关语言学特征能够改进模型标注效果。 相似文献
11.
汉英统计机器翻译中,汉语语料通常需要使用中文分词将句子切分成词序列。然而中文分词不是为统计机器翻译而开发的技术,它的分词结果不能保证对统计机器翻译的优化。近些年,一些研究试图改进中文分词方法从而达到对统计机器翻译的优化。在该文中,从另外的角度研究中文分词对统计机器翻译的影响。基本思想是利用多分词结果作为额外的语言知识,提出一种简单而有效的方法使这些知识为统计机器翻译所用,使用了一系列策略融合多分词结果,并将融合结果应用在统计机器翻译系统中。实验结果表明这种方法比没有使用多分词结果融合的系统提高1.89个BLEU分数。 相似文献
12.
神经机器翻译技术是目前机器翻译应用中取得效果最好的方法。将外部语言学知识如单词词性、依存句法标签引入神经机器翻译系统以提高翻译性能已经被很多学者证明是一种行之有效的途径。相较于其他表音文字,汉字是一种形声字,其构造方法具有一半表音、一半表意的特殊结构,这种特殊的构造法使得汉字含有丰富的语义、语音和句法信息。该文在Marta R等工作的基础上,提出了一种新的将字形特征融入端到端模型的方法,并将之应用于中文到英文的翻译上。与基准系统相比,该方法在NIST评测集上获得平均1.1个点的显著提升,有效地证明了汉字字形特征可以对神经机器翻译模型起到促进作用。 相似文献
13.
现有神经机器翻译模型普遍采用的注意力机制是基于单词级别的,文中通过在注意力机制上执行多层卷积,从而将注意力机制从基于单词的级别提高到基于短语的级别。经过卷积操作后的注意力信息将愈加明显地体现出短语结构性,并被用于生成新的上下文向量,从而将新生成的上下文向量融入到神经机器翻译框架中。在大规模的中-英测试数据集上的实验结果表明,基于注意力卷积的神经机翻译模型能够很好地捕获语句中的短语结构信息,增强翻译词前后的上下文依赖关系,优化上下文向量,提高机器翻译的性能。 相似文献
14.
15.
变分方法是机器翻译领域的有效方法,其性能较依赖于数据量规模.然而在低资源环境下,平行语料资源匮乏,不能满足变分方法对数据量的需求,因此导致基于变分的模型翻译效果并不理想.针对该问题,本文提出基于变分信息瓶颈的半监督神经机器翻译方法,所提方法的具体思路为:首先在小规模平行语料的基础上,通过引入跨层注意力机制充分利用神经网络各层特征信息,训练得到基础翻译模型;随后,利用基础翻译模型,使用回译方法从单语语料生成含噪声的大规模伪平行语料,对两种平行语料进行合并形成组合语料,使其在规模上能够满足变分方法对数据量的需求;最后,为了减少组合语料中的噪声,利用变分信息瓶颈方法在源与目标之间添加中间表征,通过训练使该表征具有放行重要信息、阻止非重要信息流过的能力,从而达到去除噪声的效果.多个数据集上的实验结果表明,本文所提方法能够显著地提高译文质量,是一种适用于低资源场景的半监督神经机器翻译方法. 相似文献
16.
17.
近年来,神经机器翻译(neural machine translation, NMT)表现出极大的优越性,然而如何在翻译一个文档时考虑篇章上下文信息仍然是一个值得探讨的问题。传统的注意力机制对源端的所有词语进行计算,而在翻译当前句子时篇章中大量的信息中只有小部分是与之相关的。在篇章级机器翻译中,采用传统的注意力机制建模篇章信息存在着信息冗余的问题。该文提出了一种联合注意力机制,结合“硬关注”和“软关注”的机制对篇章上下文的信息进行建模。关键思想是通过“硬关注”筛选出与翻译当前句子相关的源端历史词语,然后采用“软关注”的方法进一步抽取翻译中所需的上下文信息。实验表明,相比于基线系统,该方法能使翻译性能获得明显提升。 相似文献
18.
19.
模型存储压缩,旨在在不改变模型性能的同时,大幅度降低神经网络中过多的模型参数带来的存储空间浪费。研究人员对于模型存储压缩方法的研究大多数在计算机视觉任务上,缺乏对机器翻译模型压缩方法的研究。该文在机器翻译任务上通过实验对比剪枝、量化、低精度三种模型压缩方法在Transformer和RNN(recurrent neural network)两种模型上的模型压缩效果,最终使用剪枝、量化、低精度三种方法的组合方法可在不损失原有模型性能的前提下在Transformer和RNN模型上分别达到5.8×和11.7×的压缩率。同时,该文还针对三种模型压缩方法在不同模型上的优缺点进行了分析。 相似文献