共查询到18条相似文献,搜索用时 62 毫秒
1.
本文给出了一个无监督图像类别聚类的新方法,该方法基于信息理论原理--信息瓶颈.本聚类方法基于阶段性的分组:首先,对给定文档中的每一张图像应用高斯混合模型,在选定的特征空间中,以一组相连接的区域来表示图像.然后,确保簇和图像内容之间的互信息最大化,对图像进行分组.簇的合适数量可直接由信息瓶颈原理决定.实验结果显示出了该聚类方法在真实图像数据库中的表现. 相似文献
2.
本文就模糊C均值聚类算法的优势与缺陷为主要依据,提出了一种模糊聚类无监督算法,切实应用于图像分割。并提出了基于Polysegment快速分析纹理图像的方法明确聚类数目,在此基础上利用模糊聚类无监督算法获取最终分割结果。通过实验结果表明,模糊聚类无监督算法在图像分割中使用所获得的分割结果可以在很大程度避免图像纹理对分割结果的影响,有效分割目标图像与背景图像,精确度较高,而且对不同图像分割的精确性,幅值变化相对稳定,是一种非常科学有效的图像分割法,值得大力推广应用。 相似文献
3.
4.
提出一种基于无监督模糊C均值聚类的彩色自然图像分割算法。使用置信区间交集准则自适应得到Gabor滤波器中各个像素点对应的尺度,并以该自适应尺度为依据,计算相应的自适应方向、频率以及相位;使用该自适应Gabor滤波方法分别对各通道进行纹理分析得到相应的纹理图像。提出一种快速的基于多项式分割的方法对各个纹理图像进行分析,确定聚类数目,并使用无监督模糊C均值聚类算法得到最终的分割结果。实验结果表明,该算法能够很好地克服图像纹理对于分割结果的影响,有效区分目标与背景,分割结果具有较高的分割精度,是一种有效的自然彩色图像分割方法。 相似文献
5.
6.
支持向量机作为一种新的机器学习方法,由于其建立在结构风险最小化准则之上,而不是仅仅使经验风险达到最小,从而使对支持向量分类器具有较好的推广能力。本文分析了支持向量机在解决无监督分类问题上的不足,提出一种基于支持向量机思想的最大间距的聚类新方法。实验结果表明.该算法能成功地解决很多非监督分类问题。 相似文献
7.
高广尚 《计算机工程与应用》2018,54(7):11-19
旨在从无监督聚类角度分析实体解析过程的机制。从特定类型、经典算法角度研究了无监督聚类的思路;从经典算法改进、演化分析角度研究了无监督增量聚类的思路;最后,对无监督聚类研究下一步需要解决的问题进行了展望。无监督聚类技术不仅能很好地解决传统实体解析过程中存在的聚类效率和质量问题,而且还能利用已有的聚类结果对快速演化的数据进行增量解析,进而进一步满足大数据环境下亟需的增量解析需求。没有深入分析无监督聚类算法的评价指标,尽管面向实体解析的无监督聚类方法有诸多优势,但仍然面临着准确性和可扩展性等挑战。 相似文献
8.
分析了支持向量机在解决无监督分类问题上的不足,提出一种基于支持向量机思想的最大间距的聚类新方法。实验结果表明,该算法能成功地解决很多非监督分类问题。 相似文献
9.
利用图像纹理的信息熵特征,并结合空间矩阵的概念,提出一种基于免疫K-means聚类的无监督SAR图像分割算法.免疫规划的K-means聚类克服收敛结果易陷于局部极值的缺点,且保持K-means算法快速收敛的特点.信息熵的应用可有效抑制相干斑噪声的影响,空间矩阵的引入实现聚类过程中类别的自动合并.该算法执行复杂度不高,对噪声的影响有较强的鲁棒性,分割结果较好,是一种实用的SAR图像分割算法. 相似文献
10.
支持向量机作为一种新的机器学习方法,由于其建立在结构风险最小化准则之上,而不是仅仅使经验风险达到最小,从而使对支持向量分类器具有较好的推广能力。本文分析了支持向量机在解决无监督分类问题上的不足,提出一种基于支持向量机思想的最大间距的聚类新方法。实验结果表明,该算法能成功地解决很多非监督分类问题。 相似文献
11.
12.
由于兴趣点是图像中的基础、关键特征,因此兴趣点检测是图像配准、图像检索以及图像识别的关键步骤。基于兴趣点对于图像特征响应较为强烈的特性,结合非监督特征学习算法可以自主地从无标签的样本中提取特征的思想,提出了UFL-ID兴趣点检测算法。该算法无监督学习了图像的底层特征,对特征进行信息量和各向同性的评价,并利用特征的卷积响应及评价参数寻找图像中的兴趣点。与其他常见的兴趣点检测算法的对比实验表明,该算法具有良好的重复性与抗噪能力。 相似文献
13.
为了改善基于内容的遥感图像检索技术,以遥感图像区域检索为框架,提出了一种新的基于图论的无监督学习遥感图像检索算法。首先,提出的方法 用图表为每一幅图像建模,同时结合局部信息和相关的空间结构,提供基于区域的图像代表。将每一幅图像初步划分为不同的区域,再通过属性关系图建模,节点和边界分别代表区域特征和它们之间存在的空间关系。然后,通过评估基于图像的相似点实现最相似于查询图像的图像检索。为匹配相应的图像以及按照图像相似点实现图像检索,采用了结合子图同构算法和光谱图嵌入技术的新型非精确图像匹配策略。实验结果显示,与其他两种无监督遥感图像检索方法相比,所提方法的检索性能明显改善。 相似文献
14.
针对心电信号异常诊断,提出了一种基于无监督学习的移动心电信号异常诊断方法。该方法利用层次聚类将心电数据进行分类,同时结合特征量的优先级诊断分析法,有效避免了因移动心电信号的数据量过大而产生爆炸的时间复杂度和空间复杂度的问题。最后,通过心电信号实例验证了所提方法具有良好的可靠性和运行效率。 相似文献
15.
在说话人确认任务中,得分规整可有效调整测试得分分布,使得每个说话人的得分分布接近同一分布,从而提升系统整体性能。在本文中,直接从开发集中获得针对待识别目标说话人的大量冒认者得分,利用无监督聚类手段对这些得分进行筛选,并采用混合高斯模型来拟合得分分布,挑选均值最大的高斯单元作为得分规整的参数并将其应用于说话人的得分规整。在NIST SRE 2016测试集上,相对于其它得分规整算法,采用无监督聚类得分规整的方法可有效提升系统性能。 相似文献
16.
聚类作为一种无监督的学习方法,通常需要人为地提供聚类的簇数。在先验知识缺乏的情况下,通过人为指定聚类参数是不合实际的。近年来研究的聚类有效性函数(Cluster Validity Index) 用于估计簇的数目及聚类效果的优劣。本文提出了一种新的基于有效性指数的聚类算法,无需提供聚类的参数。算法每步合并两个簇,使有效性指数值增加最大或减小最少。本文运用引力模型度量相似度,对可能出现的异常点情况作均匀化的处理。实验表明,本文的算法能正确发现特定数据的簇个数,和其它聚类方法比较,聚类结果具有较低的错误率,并在效率上优于一般的基于有效性指数的聚类算法。 相似文献
17.
18.
传统的谱聚类方法使用k-means达到最后的聚类目的。k-means对初始条件敏感,易陷入局部最优,从而导致传统的谱聚类方法应用到图像分割时效果不太理想。将遗传算法用于优化谱方法的聚类阶段,提出一种以遗传算法优化普聚类的图像分割方法(Image Segmentation Algorithm of Spectral Clustering Optimization Based on Genetic,ISCOG)。在合成图像与真实图像上的实验表明ISCOG算法极大地提高了谱聚类算法的稳定性和聚类质量,证明了ISCOG算法的优越性。 相似文献