首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
微生物诱导碳酸钙沉积是一种新型的地基处理技术,处理后的土体可以看成一种结构性土。首先,在已有三维含颗粒抗转动和抗扭转模型及三维胶结破坏准则的基础上,通过考虑颗粒碰撞接触过程中颗粒本身的塑性变形及率相关性的接触黏滞阻尼,建立考虑循环荷载作用下的三维胶结模型;然后,参考已有研究,建立了反硝化反应在加固砂土中的时效性关系。并引入CFD-DEM耦合程序,用以模拟分析不同胶结含量以及不同气泡含量下,微生物处理砂土在固结不排水循环剪切试验中的力学特性;最后,从宏微观角度分析生物胶结与生物气泡对砂土抗液化性能的影响及其作用机理。研究表明,胶结和气泡共同存在对抗液化能力的提升并没有起到"1+1=2"的效果;胶结的存在提高了非饱和砂土的抗液化能力,明显抑制孔压比和轴向应变的发展,力学配位数得到了提升;而气泡的存在却降低了胶结砂土的抗液化能力,使得胶结砂土达到初始液化的振次减少,轴向应变向受拉方向大幅增长,力学配位数下降明显。  相似文献   

2.
天然或人工胶结的存在能够提高砂土的抗液化能力,从宏微观尺度对其动力学性质进行研究具有重大意义.将已有的三维完整胶结接触模型引入到三维离散元程序中,对胶结砂土不排水循环三轴剪切试验进行三维离散元模拟,研究颗粒间胶结、循环应力比对离散元试样宏微观力学性质的影响.研究结果表明,胶结的存在能够抑制轴应变和孔压的发展,提高砂土的...  相似文献   

3.
松软的砂土地基在地震等作用下会发生液化,可能造成巨大的灾害。地基抗液化问题的相关研究具有极大的理论意义和工程意义。利用新兴的微生物诱导碳酸钙结晶技术(MICP技术)来处理液化砂土;然后通过三轴固结不排水试验(CU)和动三轴试验来考察其力学性质。试验结果表明:微生物诱导碳酸钙的生成改善了砂土的抗液化性能;最后利用TTS本构模型对其进行数值模拟,表明该模型具有在单元尺度上统一描述砂土及MICP处理后的砂土应力-应变的能力。  相似文献   

4.
刘天喜  魏承  马亮  赵阳 《岩土工程学报》2014,36(11):2118-2126
针对月壤钻取采样过程中存在大颗粒岩块情况进行三维离散元动态仿真分析。建立考虑扭转、弯曲力矩及等效引力作用的新型三维离散元月壤模型,通过三轴仿真试验进行细观参数标定,得到黏聚力为0.90 kPa,内摩擦角为42.25°的满足真实月壤宏观力学指标的仿真模型。针对月壤内层存在大颗粒情况设计4种采样工况分别进行仿真分析,监测大颗粒运动轨迹与采样效率,发现了“旋入效应”、“纵向运移效应”与“阻塞效应”,仿真结果表明岩块粒径大小直接影响采样结果:当岩块粒径小于钻头“虚拟切削圆”时,其无论存在于任何位置对采样效率与后续样品缠绕收集均无明显影响;当岩块粒径大于“虚拟切削圆”时,阻塞现象严重,样品收集困难,极易导致采样失败。研究结论对月壤钻取采样控制设计与钻具结构设计具有重要的工程参考价值。  相似文献   

5.
岩土热力学模型(thermodynamic soil model,TSM)是基于颗粒固体的非平衡态热力学理论,建立的一种崭新的描述岩土力学问题的统一理论模型。该模型引入“颗粒熵运动”和“弹性弛豫”,对土体颗粒层次的耗散机制进行了合理地考虑,这些使得模型能够更深入描述土体的变形和能量耗散机理,从而能够在统一理论框架中描述岩土体复杂多变的物理力学行为。基于该理论模型,研究了饱和土体的固结压缩和蠕变问题,分析了加载速率、应力/应变路径和非单调荷载等因素的影响规律。模拟结果表明:模型具有描述复杂条件下的饱和土体的固结压缩和蠕变特性的能力,具有较高的理论和工程应用价值。  相似文献   

6.
为了研究非饱和结构性黄土在侧限状态下受竖向荷载和增湿作用的宏微观力学性质,对非饱和重塑和结构性黄土侧限压缩和湿陷试验开展了三维离散元模拟分析。首先通过引入颗粒吸引力考虑黄土颗粒间范德华力和毛细力作用,引入胶结考虑结构性黄土颗粒间化学胶结作用,建立结构性黄土三维接触模型;然后采用分层欠压法并考虑颗粒间范德华力制成松散均匀的黄土离散元试样,在试样中施加毛细力模拟黄土的非饱和性,施加胶结模拟黄土的结构性;最后选择合适的接触模型参数,对试样施加分级竖向荷载并在多级荷载下进行了增湿试验分析。结果表明:离散元模拟能够再现黄土室内侧限压缩和湿陷试验的主要力学性质,如重塑黄土的屈服应力和结构性土的结构屈服应力随含水率的减小而增加,重塑黄土和结构性黄土单线法增湿变形结果基本与双线法结果相同。胶结破坏分析表明,结构性黄土离散元试样的胶结破坏存在阈值平均应力;增湿后达到的胶结破坏数与相同竖向压力下的饱和土胶结破坏数相差不大(单双线法相同);湿陷体应变与胶结破坏数量密切相关。  相似文献   

7.
根据近期胶结铝棒接触力学特性的实测结果,提炼出用于模拟胶结砂土粒间胶结作用的胶结接触模型,并将该模型引入二维离散元商业软件PFC2D。通过对不同胶结强度和不同围压下胶结砂土的平面应变双轴压缩试验的离散元模拟,分析了理想胶结砂土的宏观力学特性及其剪切带的形成规律。结果表明:相比同一孔隙比的无胶结试样,胶结试样具有更高的峰值强度、显著的应变软化和剪胀现象以及明显的剪切带,宏观力学特性与其胶结接触微观力学机理密切相关,模拟结果与已有室内试验结果具有规律上的一致性;由胶结试样内部的微观信息统计可知,胶结试样剪切带的形成一般在其峰值强度之后,且剪切带的形成是试样变形、胶结破坏、孔隙比、平均纯转动率和位移场等微观参量局部化的综合表现。  相似文献   

8.
自密实混凝土在重力坝施工过程中受施工工艺、施工质量及施工环境等因素的影响,砂土颗粒间的胶结强度可能各不相同。为研究不同胶结强度的胶结砂土的力学特性,借助PFC3D自带的微观胶结模型,将胶结砂土中的胶结强度的分布定义为正态分布,并系统地分析了在不同方差和胶结含量下胶结砂土的力学特性。研究表明,胶结试样在数值试验中表现出应力应变软化特性及体变剪胀性,且随着胶结含量的增大,软化及剪胀程度提高;当偏应力达到峰值时,随着轴向应变的增大,体变由剪缩变化为剪胀。在假定的胶结砂样的胶结强度服从正态分布的情况下,峰值应力随着胶结含量成线性增大,但正态分布方差的变化对胶结砂样强度的影响不大。  相似文献   

9.
对非饱和结构性黄土进行离散元模拟需要合理的三维胶结接触模型。在含抗转动和抗扭转模型基础上引入了颗粒间吸引力以考虑范德华力和毛细力作用;提出了考虑胶结尺寸影响的胶结刚度和强度公式,考虑了不可恢复的化学胶结作用;建立了可以全面考虑含水率-孔隙比-吸力耦合作用的黄土接触模型。通过开展常规三轴压缩以及在不同偏应力水平下湿陷试验的三维离散元模拟,表明该三维接触模型可以较好地反映室内试验中非饱和结构性黄土的主要力学特性。  相似文献   

10.
不同沉积方向各向异性结构性砂土离散元力学特性分析   总被引:2,自引:0,他引:2  
为探究沉积方向对各向异性结构性砂土力学特性的影响,首先采用椭圆颗粒生成两种不同沉积方向(水平与竖直)的各向异性净砂样,其次,引入一个考虑胶结厚度影响的微观胶接触模型从而生成各向异性结构性砂土。最后,对两种各向异性结构性砂土试样进行双轴压缩试验,并将水平沉积试样试验结果与室内试验结果对比验证该模型的可行性。同时,将两种不同方向试样的试验结果进行对比以探究沉积方向的影响。结果表明:两种试样应力–应变关系均呈软化及剪胀现象,水平沉积试样峰值偏应力较竖直沉积试样大,而二者残余阶段偏应力无明显差别;水平沉积试样临界孔隙比较竖直沉积试样大;胶结破坏速率及胶结破坏率变化与宏观力学特性变化相对应,且变化规律基本相同;水平方向沉积试样的胶结接触主方向始终保持竖直而竖直沉积试样的胶结接触主方向始终保持水平;在水平沉积试样中始终为水平分布颗粒长轴分布主方向,而竖直沉积试样中颗粒长轴逐渐向各向同性分布靠近。  相似文献   

11.
《Soils and Foundations》2009,49(2):259-274
In order to investigate the effects of different geological ages on liquefaction properties of sandy deposits, a series of undrained cyclic triaxial tests was performed on three kinds of in-situ frozen and their reconstituted samples which were retrieved from Holocene (Tone-river sand) and Pleistocene (Edo-river B and C sands) deposits. The specimens were subjected to isotropic consolidation at a specified confining stress which is equivalent to the in-situ overburden stress at the depth of sampling, and small strain shear moduli were measured before and during the undrained cyclic loading tests. The liquefaction properties and the small strain shear moduli were affected by not only the natural aging effect of the specimen but also the inter-locking effect that was enhanced by applying drained cyclic loading before the undrained cyclic loading tests. During liquefaction, different tendencies of degradation in the small strain shear moduli which would reflect the aging effects of the specimen were observed between Tone-river Holocene sand and Edo-river B and C Pleistocene sands. The applicability of reconstituted samples as substitutes for in-situ frozen samples was confirmed with Tone-river Holocene sand that has no cementation effect between soil particles, whereas it seems difficult to simulate fully the liquefaction behaviour of Edo-river B and C Pleistocene sands which have higher cementation effect.  相似文献   

12.
The liquefaction resistance of sand increases with cyclic pre-shearing and pre-shaking as a result of earthquakes if the strain level in the pre-shearing is small. When larger shear strains are imposed, liquefaction resistance decreases. These complicated effects of pre-shearing histories on the liquefaction resistance are investigated in this study through a series of cyclic triaxial tests. Various combinations of cyclic stress amplitude and number of cycles of pre-shearing are examined. The tested sand is Toyoura Sand at 45% relative density, under a confining pressure of 50 kPa. Test results indicate that for the range of shear strain amplitude in pre-shearing smaller than 0.35%, the liquefaction resistance increases with pre-shearing. The increase in the liquefaction resistance depends strongly on the volumetric strain in the pre-shearing, and several effects of the shear stress amplitude and number of cycles can be negligible. Small volumetric strain of the order of 1% doubled the liquefaction resistance. Meanwhile, in the range of shear strain amplitude larger than 0.6%, the liquefaction resistance decreases. The liquefaction resistance decreases as the shear strain amplitude increases. Shear strain amplitude is one of the factors dominating this degrading effect, and the volumetric strain exerts beneficial effects to a certain extent. In this study, another series of tests are conducted to investigate the combined effects of small and large strain amplitude pre-shearing. It is observed that small shear strain pre-shearing cycles subsequent to large shear strain cycles erased the degrading effect of the latter. However, a large shear strain pre-shearing after small strain cycles degrades the beneficial effect of the small shear strain pre-shearing cycles previously applied to the specimens; however, the effects of the former small strain pre-shearing remains.  相似文献   

13.
《Soils and Foundations》2001,41(6):53-62
In order to investigate the effects of different consolidation conditions on liquefaction characteristics of sands containing fines, a series of undrained cyclic triaxial liquefaction tests was performed on artificial samples prepared by mixing Toyoura sand and bentonite at a ratio of 95% to 5% by dry weight. Some specimens were isotropically consolidated for i, 20 or 100 days at a regular temperature, while the others were consolidated for 2 or 5 days while heating the cell water up to 60 degrees centigrade. Over-consolidated specimens with OCR of 2 and 4 were also prepared at a regular temperature. During consolidation and cyclic triaxial shearing of several specimens, their quasi-elastic deformation properties were measured while applying very small amplitude cyclic axial loads. Longer consolidation time, higher temperature during consolidation or higher ratio of over-consolidation resulted in an increase in the liquefaction resistance, with the exception that the liquefaction resistance of specimens consolidated for 100 days was not larger than that of specimens consolidated for 20 days. On the other hand, such different consolidation conditions affected the change in the quasi-elastic deformation properties in different manners. Development of cementation was suggested to have occurred during consolidation under high temperature. Reduction in the extent of anisotropy was suggested to have occurred during over-consolidation, which was accompanied by a decrease in the negative dilatancy at the initial part of shearing.  相似文献   

14.
循环荷载作用下饱和砂砾土的破坏机理与动强度   总被引:1,自引:0,他引:1  
不同研究者对砂砾土动强度影响因素的认识存在相互冲突之处。针对含砾量、相对密度、初始有效固结应力和固结比4个主要因素,对10组不同含砾量的饱和砂砾土开展了系列循环三轴试验,提出了砂砾土破坏评价准则;引入二元聚集模型,研究了饱和砂砾土的不排水动力特性及其动强度的量化方法。研究结果表明:不同试验条件下砂砾土存在两类破坏机理,即均等固结条件下表现为达到零有效应力状态的循环液化,非均等固结条件下表现为过大累积轴向变形的循环失效;引入砂砾土骨架结构孔隙比概念,砂砾土动强度CRR随砂砾土骨架结构孔隙比的增大而降低,且其降低趋势呈良好的指数函数关系。  相似文献   

15.
针对饱和南沙岛礁珊瑚砂,开展了一系列不排水循环加载试验,研究了相对密度D_r和初始围压■对饱和珊瑚砂的超孔隙水压力、应变发展、有效应力路径及动强度特性的影响,并比较了珊瑚砂与福建砂的液化特性差异。试验表明,珊瑚砂的超静孔压Δu的发展模式与石英砂的有较大区别,可用修正后的Seed模型进行表征。珊瑚砂液化时的累积能量耗散远比福建砂的大。珊瑚砂的轴向应变ε_(DA)随着循环振次增加而逐渐变大,不会发生急剧增大的现象。在有效应力路径接触相转换线后,珊瑚砂会发生剪胀和剪缩交替出现的现象,仍然会存在有效应力。较之福建砂Δu的波动特征,珊瑚砂Δu的波动更大,且当Δu接近■时波动明显增大,产生"瞬时液化"现象。珊瑚砂的动强度随着D_r以及■的增大而增大。珊瑚砂的动强度大于石英砂的动强度。  相似文献   

16.
利用GDS动三轴仪对水泥固化漳州滨海风积砂进行液化强度试验,分析水泥固化漳州滨海风积砂在不同水泥剂量、不同龄期、不同基准应变和不同等幅循环应变幅值下的液化特性。试验结果表明:砂样的抗液化能力随水泥掺量的增加近似呈线性提高;随龄期增长而增强,但基准应变越高,增强越弱;随循环应变幅值的减小而显著增强;基准应变对砂样抗液化能力的影响受水泥掺量的制约。孔压半对数模型可以较好的反应水泥固化漳州滨海风积砂土的孔压发展规律;存在一个临界基准应变,使得抗液化能力随水泥剂量的增加得到最大化提高。  相似文献   

17.
《Soils and Foundations》2023,63(1):101252
Collapsible soils are typically found in arid regions and often have an aeolian or alluvial origin. In their natural states, they may have a low moisture content and cemented structure that can contribute to high strength and stiffness; however, wetting or saturation can reduce the strength and stiffness due to loss of the cementation. This paper presents a geotechnical characterization of collapsible salty sands in the highly seismic southern coast of Peru, which makes the characterization of their dynamic properties and expected response to earthquake-induced demands (e.g., liquefaction) of primary importance. The geotechnical characterization was performed on intact and remolded samples utilizing various field and laboratory tests, including oedometer, direct shear, static triaxial, cyclic simple shear, torsional resonant column, plate loading, and MASW tests. The results revealed insights on the geotechnical properties and mechanical response of collapsible soils and the effects of salt cementation. The results indicated: 1) a decreasing brittle and collapsible behaviors with decreasing cementation while maintaining consistent post-collapse residual strength; 2) oedometer and in situ plate loading tests showed a sudden increase in deformations once cementation is broken; 3) higher dilation potential of collapsible soils as compared to natural sands; 4) decrease in the maximum shear modulus due to the loss of cementation; 5) increase in the stress dependence of the maximum shear modulus with loss of cementation; and 6) a higher resistance to liquefaction for the collapsible soils, even after washing, as compared to natural sands, which may be ascribed to the more pronounced dilation potential.  相似文献   

18.
《Soils and Foundations》2022,62(5):101202
The liquefaction phenomena of sands have been studied by many researchers to date. Laboratory element tests have revealed key factors that govern liquefaction phenomena, such as relative density, particle size distribution, and grain shape. However, challenges remain in quantifying inherent anisotropy and in evaluating its impact on liquefaction phenomena. This contribution explores the effect of inherent anisotropy on the mechanical response of granular materials using the discrete element method. Samples composed of spherical particles are prepared which have approximately the same void ratio and mean coordination number (CN), but varying degrees of inherent anisotropy in terms of contact normals. Their mechanical responses are compared under drained and undrained triaxial monotonic loading as well as under undrained cyclic loading. The simulation results reveal that cyclic instability followed by liquefaction can be observed for loose samples having a large degree of inherent anisotropy. Since a sample having initial anisotropy tends to deform more in its weaker direction, leading to lower liquefaction resistance, a sample having an isotropic fabric potentially exhibits the greatest liquefaction resistance. Moreover, the effective stress path during undrained cyclic loading is found to follow the instability and failure lines observed for static liquefaction under undrained monotonic loading. From a micromechanical perspective, the recovery of effective stress during liquefaction can be observed when a threshold CN develops along with the evolving induced anisotropy. Realising that the conventional index of the anisotropic degree (a) is not effective when the CN drops to almost zero during cyclic liquefaction, this contribution proposes an alternative index, effective anisotropy (a×CN), with which the evolution of induced anisotropy can be tracked effectively, and common upper and lower bounds can be defined for both undrained monotonic and cyclic loading tests.  相似文献   

19.
《Soils and Foundations》2014,54(6):1094-1103
The changes of the cyclic resistance of two silty sands under unsaturated, partially saturated and fully saturated conditions are examined based on a series of undrained cyclic tests conducted using triaxial test apparatus specially equipped for testing unsaturated soils as well as ordinary triaxial test apparatus for testing partially saturated and fully saturated soils. Based on the observations of volumetric strain, pore air and pore water pressures of unsaturated soil specimens, the possibility of soil liquefaction triggering under different degrees of saturation is examined and discussed. The changes in the cyclic resistance under different degrees of saturation are then examined. Those two unsaturated silty sands with different grain size compositions are found to give rise to different responses on the volumetric strain as well as pore air and pore water pressure developments during undrained cyclic loading, leading to different relations between cyclic resistance and degree of saturation, covering unsaturated, partially saturated and fully saturated conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号